mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 01:49:25 +08:00
add stream code
This commit is contained in:
@@ -12,11 +12,12 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import torch
|
||||
import time
|
||||
from hyperpyyaml import load_hyperpyyaml
|
||||
from modelscope import snapshot_download
|
||||
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
||||
from cosyvoice.cli.model import CosyVoiceModel
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
|
||||
class CosyVoice:
|
||||
|
||||
@@ -44,40 +45,48 @@ class CosyVoice:
|
||||
spks = list(self.frontend.spk2info.keys())
|
||||
return spks
|
||||
|
||||
def inference_sft(self, tts_text, spk_id):
|
||||
tts_speeches = []
|
||||
def inference_sft(self, tts_text, spk_id, stream=False):
|
||||
start_time = time.time()
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
model_input = self.frontend.frontend_sft(i, spk_id)
|
||||
model_output = self.model.inference(**model_input)
|
||||
tts_speeches.append(model_output['tts_speech'])
|
||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
||||
for model_output in self.model.inference(**model_input, stream=stream):
|
||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
||||
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False):
|
||||
start_time = time.time()
|
||||
prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
||||
tts_speeches = []
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
||||
model_output = self.model.inference(**model_input)
|
||||
tts_speeches.append(model_output['tts_speech'])
|
||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
||||
for model_output in self.model.inference(**model_input, stream=stream):
|
||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k):
|
||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False):
|
||||
if self.frontend.instruct is True:
|
||||
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
||||
tts_speeches = []
|
||||
start_time = time.time()
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
||||
model_output = self.model.inference(**model_input)
|
||||
tts_speeches.append(model_output['tts_speech'])
|
||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
||||
for model_output in self.model.inference(**model_input, stream=stream):
|
||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_instruct(self, tts_text, spk_id, instruct_text):
|
||||
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False):
|
||||
if self.frontend.instruct is False:
|
||||
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
||||
start_time = time.time()
|
||||
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
||||
tts_speeches = []
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
||||
model_output = self.model.inference(**model_input)
|
||||
tts_speeches.append(model_output['tts_speech'])
|
||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
||||
for model_output in self.model.inference(**model_input, stream=stream):
|
||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
Reference in New Issue
Block a user