clean code

This commit is contained in:
root
2025-10-08 16:48:00 +08:00
parent f186ec3338
commit a019a2504e
5 changed files with 46 additions and 193 deletions

View File

@@ -43,7 +43,7 @@ import torchaudio
from matcha.utils.audio import mel_spectrogram
from datetime import datetime
ORIGINAL_VOCAB_SIZE = 151663
torch.set_num_threads(1)
@@ -85,9 +85,7 @@ class TritonPythonModel:
self.model_config = json.loads(args['model_config'])
parameters = self.model_config['parameters']
model_params = {k: v["string_value"] for k, v in parameters.items()}
self.logger.log_info(f"model_params:{model_params}")
self.dynamic_chunk_strategy = model_params.get("dynamic_chunk_strategy", "exponential") # "exponential" or "time_based"
# self.dynamic_chunk_strategy = "equal"
self.logger.log_info(f"Using dynamic chunk strategy: {self.dynamic_chunk_strategy}")
# Initialize tokenizer
@@ -103,12 +101,8 @@ class TritonPythonModel:
self.flow_pre_lookahead_len = 3
self.token_hop_len = 15
spk_info_path = os.path.join(model_params["model_dir"], "spk2info.pt")
if not os.path.exists(spk_info_path):
raise ValueError(f"spk2info.pt not found in {model_params['model_dir']}")
spk_info = torch.load(spk_info_path, map_location="cpu", weights_only=False)
self.default_spk_info = spk_info["001"]
self.http_client = httpx.AsyncClient()
self.api_base = "http://localhost:8000/v1/chat/completions"
def _convert_speech_tokens_to_str(self, speech_tokens: Union[torch.Tensor, List]) -> str:
"""Converts a tensor or list of speech token IDs to a string representation."""
@@ -147,12 +141,8 @@ class TritonPythonModel:
"stream": True,
}
api_base = "http://localhost:8000/v1/chat/completions"
buffer = ""
async with self.http_client.stream("POST", api_base, json=payload, timeout=None) as response:
print(f"start httpx.AsyncClient, target_text: {target_text[:5]}, time: {datetime.now()}")
print(f"start response.aiter_lines, target_text: {target_text[:5]}, time: {datetime.now()}")
async with self.http_client.stream("POST", self.api_base, json=payload, timeout=None) as response:
response.raise_for_status()
async for line in response.aiter_lines():
if line.startswith("data: "):
@@ -164,7 +154,6 @@ class TritonPythonModel:
content = json_data.get("choices", [{}])[0].get("delta", {}).get("content")
if content:
buffer += content
print(f"buffer: {buffer}, target_text: {target_text[:5]}, time: {datetime.now()}")
while True:
match = re.search(r"<\|s_(\d+)\|>", buffer)
if not match:
@@ -307,40 +296,24 @@ class TritonPythonModel:
wav = pb_utils.get_input_tensor_by_name(request, "reference_wav")
# Process reference audio through audio tokenizer
if wav is not None:
wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
prompt_speech_tokens = self.forward_audio_tokenizer(wav, wav_len)
prompt_speech_tokens = prompt_speech_tokens.unsqueeze(0)
wav_tensor = wav.as_numpy()
wav_tensor = torch.from_numpy(wav_tensor)[:, :wav_len.as_numpy()[0][0]]
print(f"wav_tensor: {wav_tensor.shape}, time: {datetime.now()}")
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=24000)(wav_tensor)
speech_feat = self._extract_speech_feat(prompt_speech_resample)
token_len = min(int(speech_feat.shape[1] / 2), prompt_speech_tokens.shape[-1])
prompt_speech_feat = speech_feat[:, :2 * token_len].contiguous().half()
prompt_speech_tokens = prompt_speech_tokens[:, :token_len].contiguous()
wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
prompt_speech_tokens = self.forward_audio_tokenizer(wav, wav_len)
prompt_speech_tokens = prompt_speech_tokens.unsqueeze(0)
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
reference_text = reference_text[0][0].decode('utf-8')
# prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
wav_tensor = wav.as_numpy()
wav_tensor = torch.from_numpy(wav_tensor)[:, :wav_len.as_numpy()[0][0]]
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=24000)(wav_tensor)
speech_feat = self._extract_speech_feat(prompt_speech_resample)
token_len = min(int(speech_feat.shape[1] / 2), prompt_speech_tokens.shape[-1])
prompt_speech_feat = speech_feat[:, :2 * token_len].contiguous().half()
prompt_speech_tokens = prompt_speech_tokens[:, :token_len].contiguous()
# reference_text = self.default_spk_info["prompt_text"]
# prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
# prompt_speech_feat = None
# prompt_spk_embedding = None
else:
# using pre-cached reference text
assert False, "using pre-cached reference text is not supported"
reference_text = self.default_spk_info["prompt_text"]
prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
prompt_speech_feat = None
prompt_spk_embedding = None
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
reference_text = reference_text[0][0].decode('utf-8')
target_text = pb_utils.get_input_tensor_by_name(request, "target_text").as_numpy()
target_text = target_text[0][0].decode('utf-8')
print(f"target_text: {target_text}, time: {datetime.now()}")
if self.decoupled:
response_sender = request.get_response_sender()
@@ -349,7 +322,6 @@ class TritonPythonModel:
token_offset, chunk_index = 0, 0
start_time = time.time()
this_token_hop_len = self.token_hop_len
print(f"start forward_llm_async, target_text: {target_text[:5]}, time: {datetime.now()}")
async for generated_ids in self.forward_llm_async(
target_text=target_text,
reference_text=reference_text,
@@ -358,24 +330,20 @@ class TritonPythonModel:
if not generated_ids:
break
semantic_token_ids_arr.append(generated_ids)
print(f"generated_ids: {generated_ids}, target_text: {target_text[:5]}, time: {datetime.now()}")
while True:
pending_num = len(semantic_token_ids_arr) - token_offset
if pending_num >= this_token_hop_len + self.flow_pre_lookahead_len:
this_tts_speech_token = semantic_token_ids_arr[token_offset:token_offset + this_token_hop_len + self.flow_pre_lookahead_len]
this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
print(f"chunk_index: {chunk_index}, target_text: {target_text[:5]}, time: {datetime.now()}")
sub_tts_speech = await self.forward_token2wav(
chunk_index,
this_tts_speech_token, request_id, wav, wav_len, False
)
print(f"finish token2wav, target_text: {target_text[:5]}, time: {datetime.now()}")
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
response_sender.send(inference_response)
token_offset += this_token_hop_len
self.logger.log_info(f"chunk_index: {chunk_index}, current_token_hop_len: {this_token_hop_len}")
if self.dynamic_chunk_strategy == "exponential":
this_token_hop_len = self.token_frame_rate * (2 ** chunk_index)
@@ -389,7 +357,6 @@ class TritonPythonModel:
avg_chunk_processing_time = cost_time / (chunk_index + 1)
if avg_chunk_processing_time > 0:
multiples = (duration - cost_time) / avg_chunk_processing_time
self.logger.log_info(f"multiples: {multiples}")
next_pending_num = len(semantic_token_ids_arr) - token_offset
if multiples > 4:
this_token_hop_len = (next_pending_num // self.token_hop_len + 1) * self.token_hop_len
@@ -409,9 +376,8 @@ class TritonPythonModel:
response_sender.send(inference_response)
response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
self.logger.log_info("send tritonserver_response_complete_final to end")
else:
raise NotImplementedError("Decoupled mode is not supported")
raise NotImplementedError("Offline TTS mode is not supported")
async def execute(self, requests):
"""Execute inference on the batched requests.

View File

@@ -106,13 +106,10 @@ class TritonPythonModel:
# Process each request in batch
for request in requests:
target_speech_tokens_tensor = pb_utils.get_input_tensor_by_name(request, "target_speech_tokens").as_numpy()
target_speech_tokens = torch.from_numpy(target_speech_tokens_tensor)#.to(self.device)
# shift the speech tokens according to the original vocab size
target_speech_tokens = torch.from_numpy(target_speech_tokens_tensor)
target_speech_tokens = target_speech_tokens - ORIGINAL_VOCAB_SIZE
target_speech_tokens = target_speech_tokens.squeeze().tolist()
# We set token_offset as an optional input to support streaming/offline tts. It has to be None when offline tts.
finalize = pb_utils.get_input_tensor_by_name(request, "finalize").as_numpy().item()
request_id = request.request_id()
@@ -124,23 +121,14 @@ class TritonPythonModel:
request, "reference_wav_len").as_numpy().item()
wav_array = torch.from_numpy(wav_array)
# Prepare inputs
wav = wav_array[:, :wav_len].squeeze(0)
spk_id = get_spk_id_from_prompt_audio(wav)
# wav = wav.to(self.device)
# update cache before forward
# self.token2wav_model.streaming_flow_cache[request_id]
# self.token2wav_model.hift_cache_dict[request_id]
audio_hat = self.token2wav_model.forward_streaming(target_speech_tokens, finalize, request_id=request_id, speaker_id=f"{spk_id}", prompt_audio=wav, prompt_audio_sample_rate=16000)
# get the cache after forward
outputs = []
generated_wave = audio_hat.squeeze(0).cpu().numpy()
wav_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio_hat))
outputs.append(wav_tensor)
inference_response = pb_utils.InferenceResponse(output_tensors=outputs)

View File

@@ -320,7 +320,6 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
def forward(
self, generated_speech_tokens_list: list[list[int]], prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]
):
# assert all item in prompt_audios_sample_rate is 16000
assert all(sample_rate == 16000 for sample_rate in prompt_audios_sample_rate)
@@ -335,7 +334,6 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
def prepare_prompt_audio(
self, prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]
):
# assert all item in prompt_audios_sample_rate is 16000
assert all(sample_rate == 16000 for sample_rate in prompt_audios_sample_rate)
@@ -385,7 +383,6 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
cache_dict = self.get_prompt_audio_cache_for_streaming_tts(prompt_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow)
self.speaker_cache[speaker_id] = {'prompt_audio_dict': prompt_audio_dict, 'cache_dict': cache_dict}
print(f"speaker_id {speaker_id} added to cache")
if request_id not in self.streaming_flow_cache:
self.streaming_flow_cache[request_id] = {k: v.clone() for k, v in self.speaker_cache[speaker_id]['cache_dict'].items()}
@@ -394,12 +391,6 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
source = torch.zeros(1, 1, 0, device='cuda'),
speech = torch.zeros(1, 0, device='cuda'),
)
# else:
# for k, v in self.streaming_flow_cache[request_id].items():
# print(f"k: {k}, v: {v.shape}, dtype: {v.dtype}")
# for k, v in self.hift_cache_dict[request_id].items():
# print(f"k: {k}, v: {v.shape}, dtype: {v.dtype}")
# breakpoint()
current_request_cache = self.streaming_flow_cache[request_id]
@@ -477,7 +468,6 @@ def get_args():
if __name__ == "__main__":
args = get_args()
model = CosyVoice2_Token2Wav(model_dir=args.model_dir, enable_trt=args.enable_trt)
# mkdir output_dir if not exists
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
dataset_name = "yuekai/seed_tts_cosy2"