diff --git a/.github/workflows/lint.yml b/.github/workflows/lint.yml index 884011d..ef28761 100644 --- a/.github/workflows/lint.yml +++ b/.github/workflows/lint.yml @@ -52,5 +52,5 @@ jobs: set -eux pip install flake8==3.8.2 flake8-bugbear flake8-comprehensions flake8-executable flake8-pyi==20.5.0 mccabe pycodestyle==2.6.0 pyflakes==2.2.0 flake8 --version - flake8 --max-line-length 180 --ignore B006,B008,B905,C408,E402,E731,E741,W503,W504 --exclude ./third_party/,./runtime/python/grpc/cosyvoice_pb2*py + flake8 --max-line-length 180 --ignore B006,B008,B905,C408,E402,E731,E741,W503,W504,F401,F403,F405,F841 --exclude ./third_party/,./runtime/python/grpc/cosyvoice_pb2*py if [ $? != 0 ]; then exit 1; fi \ No newline at end of file diff --git a/cosyvoice/cli/cosyvoice.py b/cosyvoice/cli/cosyvoice.py index 71351a2..cc443be 100644 --- a/cosyvoice/cli/cosyvoice.py +++ b/cosyvoice/cli/cosyvoice.py @@ -48,7 +48,7 @@ class CosyVoice: if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True): load_jit, load_trt, fp16 = False, False, False logging.warning('no cuda device, set load_jit/load_trt/fp16 to False') - self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16, trt_concurrent) + self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16) self.model.load('{}/llm.pt'.format(model_dir), '{}/flow.pt'.format(model_dir), '{}/hift.pt'.format(model_dir)) @@ -59,6 +59,7 @@ class CosyVoice: if load_trt: self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'), '{}/flow.decoder.estimator.fp32.onnx'.format(model_dir), + trt_concurrent, self.fp16) del configs @@ -162,7 +163,7 @@ class CosyVoice2(CosyVoice): if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True): load_jit, load_trt, fp16 = False, False, False logging.warning('no cuda device, set load_jit/load_trt/fp16 to False') - self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16, trt_concurrent) + self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16) self.model.load('{}/llm.pt'.format(model_dir), '{}/flow.pt'.format(model_dir), '{}/hift.pt'.format(model_dir)) @@ -173,6 +174,7 @@ class CosyVoice2(CosyVoice): if load_trt: self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'), '{}/flow.decoder.estimator.fp32.onnx'.format(model_dir), + trt_concurrent, self.fp16) del configs diff --git a/cosyvoice/cli/model.py b/cosyvoice/cli/model.py index 6ebbe52..0a1068c 100644 --- a/cosyvoice/cli/model.py +++ b/cosyvoice/cli/model.py @@ -14,7 +14,6 @@ # limitations under the License. import os from typing import Generator -import queue import torch import numpy as np import threading @@ -33,14 +32,12 @@ class CosyVoiceModel: llm: torch.nn.Module, flow: torch.nn.Module, hift: torch.nn.Module, - fp16: bool = False, - trt_concurrent: int = 1): + fp16: bool = False): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.llm = llm self.flow = flow self.hift = hift self.fp16 = fp16 - self.trt_concurrent = trt_concurrent if self.fp16 is True: self.llm.half() self.flow.half() @@ -85,7 +82,7 @@ class CosyVoiceModel: flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device) self.flow.encoder = flow_encoder - def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16): + def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent, fp16): assert torch.cuda.is_available(), 'tensorrt only supports gpu!' if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0: convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16) @@ -94,7 +91,7 @@ class CosyVoiceModel: with open(flow_decoder_estimator_model, 'rb') as f: estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read()) assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model) - self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=self.trt_concurrent, device=self.device) + self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device) def get_trt_kwargs(self): min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)] @@ -104,7 +101,7 @@ class CosyVoiceModel: return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names} def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid): - with self.llm_context, torch.cuda.amp.autocast(self.fp16): + with self.llm_context, torch.cuda.amp.autocast(self.fp16 is True and hasattr(self.llm, 'vllm') is False): if isinstance(text, Generator): assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!' for i in self.llm.inference_bistream(text=text, @@ -246,14 +243,12 @@ class CosyVoice2Model(CosyVoiceModel): llm: torch.nn.Module, flow: torch.nn.Module, hift: torch.nn.Module, - fp16: bool = False, - trt_concurrent: int = 1): + fp16: bool = False): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.llm = llm self.flow = flow self.hift = hift self.fp16 = fp16 - self.trt_concurrent = trt_concurrent if self.fp16 is True: self.llm.half() self.flow.half() diff --git a/cosyvoice/flow/flow_matching.py b/cosyvoice/flow/flow_matching.py index 9f7d0be..39b3415 100644 --- a/cosyvoice/flow/flow_matching.py +++ b/cosyvoice/flow/flow_matching.py @@ -12,7 +12,6 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -import threading import torch import torch.nn.functional as F from matcha.models.components.flow_matching import BASECFM @@ -136,12 +135,12 @@ class ConditionalCFM(BASECFM): estimator.set_input_shape('spks', (2, 80)) estimator.set_input_shape('cond', (2, 80, x.size(2))) data_ptrs = [x.contiguous().data_ptr(), - mask.contiguous().data_ptr(), - mu.contiguous().data_ptr(), - t.contiguous().data_ptr(), - spks.contiguous().data_ptr(), - cond.contiguous().data_ptr(), - x.data_ptr()] + mask.contiguous().data_ptr(), + mu.contiguous().data_ptr(), + t.contiguous().data_ptr(), + spks.contiguous().data_ptr(), + cond.contiguous().data_ptr(), + x.data_ptr()] for i, j in enumerate(data_ptrs): estimator.set_tensor_address(trt_engine.get_tensor_name(i), j) # run trt engine diff --git a/cosyvoice/llm/llm.py b/cosyvoice/llm/llm.py index c5899ac..a316e5d 100644 --- a/cosyvoice/llm/llm.py +++ b/cosyvoice/llm/llm.py @@ -1,4 +1,5 @@ # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) +# 2025 Alibaba Inc (authors: Xiang Lyu, Yabin Li, Qihua) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -295,7 +296,7 @@ class Qwen2LM(TransformerLM): # 4. sampling method self.sampling = sampling self.mix_ratio = mix_ratio - + # 5. vllm related self.stop_token_ids = [speech_token_size + i for i in range(3)] self.vllm_output_queue = {} @@ -448,8 +449,8 @@ class Qwen2LM(TransformerLM): cache = None for i in range(max_len): y_pred, cache = self.llm.forward_one_step(lm_input, - masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool), - cache=cache) + masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool), + cache=cache) logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1) top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item() if top_ids == self.speech_token_size: diff --git a/cosyvoice/llm/llm_vllm.py b/cosyvoice/llm/llm_vllm.py deleted file mode 100644 index a864a04..0000000 --- a/cosyvoice/llm/llm_vllm.py +++ /dev/null @@ -1,212 +0,0 @@ -# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import time -import queue -import asyncio -import threading -from typing import List, Generator, AsyncGenerator -import torch -from cosyvoice.utils.file_utils import logging -from cosyvoice.llm.llm import Qwen2LM - -# 启用vllm V1版本 -import os -os.environ["VLLM_USE_V1"] = '1' -from vllm import ModelRegistry -from vllm import LLMEngine, AsyncLLMEngine, CompletionOutput -from vllm.engine.arg_utils import EngineArgs, AsyncEngineArgs -from vllm.sampling_params import SamplingParams - -from cosyvoice.llm.vllm_use_cosyvoice2_model import CosyVoice2Model as CosyVoice2LLM -ModelRegistry.register_model("CosyVoice2Model", CosyVoice2LLM) - -# EngineArgs -ENGINE_ARGS = { - "block_size": 16, - "swap_space": 0, - # "enforce_eager": True, - "gpu_memory_utilization": 0.4, - "max_num_batched_tokens": 1024, - "max_model_len": 1024, - "max_num_seqs": 256, - "disable_log_requests": True, - "disable_log_stats": True, - "dtype": "float16" -} - -from vllm.sampling_params import RequestOutputKind -# SamplingParams -SAMPLING_PARAMS = { - "temperature": 1, # 不能低于0.8, 否则会生成非常多的空音频,或者无法正常生成语音Token - "top_p": 1, # 不能低于0.8, 否则会生成非常多的空音频,或者无法正常生成语音Token - "top_k": 25, - # "min_tokens": 80, # 不支持设置最小的tokens数量设置,开启后vllm直接崩溃,无法启动 - # "presence_penalty": 1.0, # 不支持设置 - # "frequency_penalty": 0.0, # 不支持设置 - "max_tokens": 1024, - "detokenize": False, # 目前 vllm 0.7.3 v1版本中设置无效,待后续版本更新后减少计算 - "ignore_eos": False, - "output_kind": RequestOutputKind.DELTA # 设置为DELTA,如调整该参数,请同时调整llm_inference的处理代码 -} - -def tensor_to_list(tensor: torch.tensor): - return tensor.view(-1).cpu().numpy().tolist() - -class VllmQwen2LM(Qwen2LM): - def __init__( - self, - model_dir, - mix_ratio: List[int] = [5, 15], - ): - self.fp16 = False - self.half = lambda: None - self.mix_ratio = mix_ratio - # --------------------------------------------- - # vllm engine 的参数配置 - engine_args = AsyncEngineArgs( - model=model_dir, - **ENGINE_ARGS, - ) - self.llm_engine: AsyncLLMEngine = AsyncLLMEngine.from_engine_args(engine_args) - - self.speech_token_size = 6564 # 6561 + 3 - self.llm_token_size = 151936 # llm vocab_size - self.sos_eos_token_id = self.speech_token_size + self.llm_token_size + 1 - self.task_token_id = self.sos_eos_token_id + 1 - self.zero_token_id = self.task_token_id + 1 - - # vllm 的推理任务需要在一个固定的事件循环中,因此启动一个后台线程运行转用于推理任务 - self.loop = asyncio.new_event_loop() - self.loop_thread = threading.Thread(target=self._run_event_loop, daemon=True) - self.loop_thread.start() - - def _run_event_loop(self): - asyncio.set_event_loop(self.loop) - self.loop.run_forever() - - async def async_llm_inference(self, out_queue, prompt_token_ids, request_id, stop_token_ids, max_tokens): - sampling_params = SamplingParams(**SAMPLING_PARAMS) - sampling_params.stop_token_ids = stop_token_ids or [6561] - if max_tokens: - sampling_params.max_tokens = max_tokens - async for output in self.llm_engine.generate( - { - "prompt_token_ids": prompt_token_ids, - }, - sampling_params=sampling_params, - request_id=request_id or f"{time.time()}", - ): - out_queue.put((output.outputs[0], output.finished)) - - def llm_inference(self, prompt_token_ids: List[int], request_id: str=None, stop_token_ids=None, max_tokens=None): - out_queue = queue.Queue() - asyncio.run_coroutine_threadsafe( - self.async_llm_inference(out_queue, prompt_token_ids, request_id, stop_token_ids, max_tokens), self.loop - ) - # 接收 out_queue 返回的结果 - finished = False - while not finished: - (output, finished) = out_queue.get_nowait() if not out_queue.empty() else out_queue.get() - yield output - - def inference( - self, - text: torch.Tensor, - text_len: torch.Tensor, - prompt_text: torch.Tensor, - prompt_text_len: torch.Tensor, - prompt_speech_token: torch.Tensor, - prompt_speech_token_len: torch.Tensor, - embedding: torch.Tensor, - sampling: int = 25, - max_token_text_ratio: float = 20, - min_token_text_ratio: float = 2, - ) -> Generator[torch.Tensor|int, None, None]: - prompt_text = tensor_to_list(prompt_text + torch.tensor(6564)) - prompt_speech_token = tensor_to_list(prompt_speech_token) - - text = tensor_to_list(text + torch.tensor(6564)) - prompt_token_ids = [self.sos_eos_token_id] + prompt_text + text + \ - [self.task_token_id] + prompt_speech_token - max_tokens = len(text) * 20 - for output in self.llm_inference( - prompt_token_ids, - stop_token_ids=[6561], - max_tokens=max_tokens, - ): - if output.token_ids[-1] == 6561: - need_add_tokens = output.token_ids[:-1] - else: - need_add_tokens = output.token_ids - for token in need_add_tokens: - yield token - - def inference_bistream( - self, - text: Generator, - prompt_text: torch.Tensor, - prompt_text_len: torch.Tensor, - prompt_speech_token: torch.Tensor, - prompt_speech_token_len: torch.Tensor, - embedding: torch.Tensor, - sampling: int = 25, - max_token_text_ratio: float = 20, - min_token_text_ratio: float = 2, - ) -> Generator[torch.Tensor, None, None]: - prompt_text = tensor_to_list(prompt_text + torch.tensor(6564)) - prompt_speech_token = tensor_to_list(prompt_speech_token) - - last_tokens = [] - prompt_token_ids = [self.sos_eos_token_id] - text_tokens_cache = prompt_text - for this_text in text: - this_text = tensor_to_list(this_text + torch.tensor(6564)) - # text need tokens - assert isinstance(this_text, list), "text need token ids List[int]." - text_tokens_cache += this_text - while len(prompt_speech_token) != 0: - if len(text_tokens_cache) >= self.mix_ratio[0]: - text_input_token = text_tokens_cache[:self.mix_ratio[0]] - speech_input_token = prompt_speech_token[:self.mix_ratio[1]] - prompt_token_ids += text_input_token + speech_input_token - # reset the last cache - text_tokens_cache = text_tokens_cache[self.mix_ratio[0]:] - prompt_speech_token = prompt_speech_token[self.mix_ratio[1]:] - else: - break - if len(prompt_speech_token) == 0: - if (len(last_tokens) > 0 and last_tokens[-1] == 6563) or len(prompt_token_ids) == 1: - if len(text_tokens_cache) >= self.mix_ratio[0]: - text_tokens_temp = text_tokens_cache[:self.mix_ratio[0]] - prompt_token_ids += text_tokens_temp - text_tokens_cache = text_tokens_cache[self.mix_ratio[0]:] - else: - continue - for output in self.llm_inference(prompt_token_ids, stop_token_ids=[6563]): - last_tokens = output.token_ids - if last_tokens[-1] == 6563: - need_add_tokens = last_tokens[:-1] - else: - need_add_tokens = last_tokens - for token in need_add_tokens: - yield token - prompt_token_ids.extend(need_add_tokens) - prompt_token_ids += text_tokens_cache + [self.task_token_id] - for output in self.llm_inference(prompt_token_ids, stop_token_ids=[6561]): - if output.token_ids[-1] == 6561: - need_add_tokens = output.token_ids[:-1] - else: - need_add_tokens = output.token_ids - for token in need_add_tokens: - yield token diff --git a/cosyvoice/utils/file_utils.py b/cosyvoice/utils/file_utils.py index 1fbddae..a92f8e7 100644 --- a/cosyvoice/utils/file_utils.py +++ b/cosyvoice/utils/file_utils.py @@ -16,7 +16,8 @@ import os import json -import torch, torchaudio +import torch +import torchaudio import logging logging.getLogger('matplotlib').setLevel(logging.WARNING) logging.basicConfig(level=logging.DEBUG, diff --git a/cosyvoice/vllm/cosyvoice2.py b/cosyvoice/vllm/cosyvoice2.py new file mode 100644 index 0000000..de0bc76 --- /dev/null +++ b/cosyvoice/vllm/cosyvoice2.py @@ -0,0 +1,103 @@ +# SPDX-License-Identifier: Apache-2.0 + +# Adapted from +# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2/modeling_qwen2.py +# Copyright 2024 The Qwen team. +# Copyright 2023 The vLLM team. +# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Inference-only Qwen2 model compatible with HuggingFace weights.""" +from vllm.model_executor.models.qwen2 import * + + +class CosyVoice2ForCausalLM(nn.Module, SupportsLoRA, SupportsPP): + packed_modules_mapping = { + "qkv_proj": [ + "q_proj", + "k_proj", + "v_proj", + ], + "gate_up_proj": [ + "gate_proj", + "up_proj", + ], + } + + def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): + super().__init__() + config = vllm_config.model_config.hf_config + quant_config = vllm_config.quant_config + lora_config = vllm_config.lora_config + + self.config = config + self.lora_config = lora_config + + self.quant_config = quant_config + self.model = Qwen2Model(vllm_config=vllm_config, + prefix=maybe_prefix(prefix, "model")) + + if get_pp_group().is_last_rank: + if config.tie_word_embeddings: + self.lm_head = self.model.embed_tokens + else: + self.lm_head = ParallelLMHead(config.vocab_size, + config.hidden_size, + True, + quant_config=quant_config, + prefix=maybe_prefix( + prefix, "lm_head")) + else: + self.lm_head = PPMissingLayer() + + self.logits_processor = LogitsProcessor(config.vocab_size) + + self.make_empty_intermediate_tensors = ( + self.model.make_empty_intermediate_tensors) + + def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: + return self.model.get_input_embeddings(input_ids) + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + intermediate_tensors: Optional[IntermediateTensors] = None, + inputs_embeds: Optional[torch.Tensor] = None, + ) -> Union[torch.Tensor, IntermediateTensors]: + hidden_states = self.model(input_ids, positions, intermediate_tensors, + inputs_embeds) + return hidden_states + + def compute_logits( + self, + hidden_states: torch.Tensor, + sampling_metadata: SamplingMetadata, + ) -> Optional[torch.Tensor]: + logits = self.logits_processor(self.lm_head, hidden_states, + sampling_metadata, self.lm_head.bias) + return logits + + def load_weights(self, weights: Iterable[tuple[str, + torch.Tensor]]) -> set[str]: + loader = AutoWeightsLoader( + self, + skip_prefixes=(["lm_head."] + if self.config.tie_word_embeddings else None), + ) + return loader.load_weights(weights)