初步合并vllm支持,异步推理的通道处理还存在bug

This commit is contained in:
qihua
2025-03-07 20:26:19 +08:00
parent fd45708e4b
commit 90b666ea20
5 changed files with 658 additions and 8 deletions

View File

@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Generator
from typing import Generator, Optional
import json
import onnxruntime
import torch
@@ -24,6 +24,8 @@ import torchaudio
import os
import re
import inflect
from pydantic import BaseModel, ConfigDict
try:
import ttsfrd
use_ttsfrd = True
@@ -36,6 +38,18 @@ from cosyvoice.utils.file_utils import logging
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph, is_only_punctuation
class SpeakerInfo(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
name: Optional[str] = None
spk_id: str
prompt_text: str
prompt_text_token: torch.Tensor
speech_feat: torch.Tensor
speech_token: torch.Tensor
embedding: torch.Tensor
class CosyVoiceFrontEnd:
def __init__(self,
@@ -55,8 +69,9 @@ class CosyVoiceFrontEnd:
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option,
providers=["CUDAExecutionProvider" if torch.cuda.is_available() else
"CPUExecutionProvider"])
self.spk2info_path = spk2info
if os.path.exists(spk2info):
self.spk2info = torch.load(spk2info, map_location=self.device)
self.spk2info = torch.load(spk2info, map_location=self.device, weights_only=False)
else:
self.spk2info = {}
self.allowed_special = allowed_special
@@ -68,7 +83,8 @@ class CosyVoiceFrontEnd:
'failed to initialize ttsfrd resource'
self.frd.set_lang_type('pinyinvg')
else:
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=True)
# self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=True)
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=False)
self.en_tn_model = EnNormalizer()
self.inflect_parser = inflect.engine()
@@ -86,8 +102,9 @@ class CosyVoiceFrontEnd:
def _extract_text_token_generator(self, text_generator):
for text in text_generator:
text_token, _ = self._extract_text_token(text)
for i in range(text_token.shape[1]):
yield text_token[:, i: i + 1]
# for i in range(text_token.shape[1]):
# yield text_token[:, i: i + 1]
yield text_token
def _extract_speech_token(self, speech):
assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
@@ -138,11 +155,15 @@ class CosyVoiceFrontEnd:
text = text.replace(" - ", "")
text = remove_bracket(text)
text = re.sub(r'[,、]+$', '', text)
if not split:
return text
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
token_min_n=60, merge_len=20, comma_split=False))
else:
text = self.en_tn_model.normalize(text)
text = spell_out_number(text, self.inflect_parser)
if not split:
return text
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
token_min_n=60, merge_len=20, comma_split=False))
texts = [i for i in texts if not is_only_punctuation(i)]
@@ -151,6 +172,7 @@ class CosyVoiceFrontEnd:
def frontend_sft(self, tts_text, spk_id):
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
embedding = self.spk2info[spk_id]['embedding']
assert embedding is not None
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
return model_input
@@ -209,3 +231,60 @@ class CosyVoiceFrontEnd:
'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
'flow_embedding': embedding}
return model_input
def generate_spk_info(self, spk_id: str, prompt_text: str, prompt_speech_16k: torch.Tensor, resample_rate:int=24000, name: str=None):
assert isinstance(spk_id, str)
assert spk_id not in self.spk2info, "spk_id already exists"
prompt_text_token, _ = self._extract_text_token(prompt_text)
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
speech_feat, _ = self._extract_speech_feat(prompt_speech_resample)
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
if resample_rate == 24000:
# cosyvoice2, force speech_feat % speech_token = 2
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
speech_feat = speech_feat[:, :2 * token_len]
speech_token = speech_token[:, :token_len]
embedding = self._extract_spk_embedding(prompt_speech_16k)
spk_info = SpeakerInfo(
name=name,
spk_id=spk_id,
prompt_text=prompt_text,
prompt_text_token=prompt_text_token,
speech_feat=speech_feat,
speech_token=speech_token,
embedding=embedding,
)
self.add_spk_info(spk_id, spk_info)
def add_spk_info(self, spk_id: str, spk_info: dict|SpeakerInfo):
if isinstance(spk_info, BaseModel):
spk_info = spk_info.model_dump()
self.spk2info[spk_id] = spk_info
if self.spk2info_path:
torch.save(self.spk2info, self.spk2info_path)
def frontend_instruct2_by_spk_id(self, tts_text, instruct_text, spk_id):
assert spk_id in self.spk2info
tts_text_token, _ = self._extract_text_token(tts_text)
prompt_text_token, _ = self._extract_text_token(instruct_text + '<|endofprompt|>')
model_input = {'text': tts_text_token,
'prompt_text': prompt_text_token,
'flow_prompt_speech_token': self.spk2info[spk_id]['speech_token'],
'prompt_speech_feat': self.spk2info[spk_id]['speech_feat'],
'llm_embedding': self.spk2info[spk_id]['embedding'],
'flow_embedding': self.spk2info[spk_id]['embedding'],
}
return model_input
def frontend_zero_shot_by_spk_id(self, tts_text, spk_id):
assert spk_id in self.spk2info
tts_text_token, _ = self._extract_text_token(tts_text)
model_input = {'text': tts_text_token,
'prompt_text': self.spk2info[spk_id]['prompt_text_token'],
'llm_prompt_speech_token': self.spk2info[spk_id]['speech_token'],
'flow_prompt_speech_token': self.spk2info[spk_id]['speech_token'],
'prompt_speech_feat': self.spk2info[spk_id]['speech_feat'],
'llm_embedding': self.spk2info[spk_id]['embedding'],
'flow_embedding': self.spk2info[spk_id]['embedding']
}
return model_input