mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
初步合并vllm支持,异步推理的通道处理还存在bug
This commit is contained in:
@@ -19,7 +19,7 @@ from hyperpyyaml import load_hyperpyyaml
|
||||
from modelscope import snapshot_download
|
||||
import torch
|
||||
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
||||
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
||||
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model, VllmCosyVoice2Model
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
from cosyvoice.utils.class_utils import get_model_type
|
||||
|
||||
@@ -63,6 +63,9 @@ class CosyVoice:
|
||||
spks = list(self.frontend.spk2info.keys())
|
||||
return spks
|
||||
|
||||
def add_spk_info(self, spk_id, spk_info):
|
||||
self.frontend.add_spk_info(spk_id, spk_info)
|
||||
|
||||
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_sft(i, spk_id)
|
||||
@@ -88,6 +91,22 @@ class CosyVoice:
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_zero_shot_by_spk_id(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
||||
"""使用预定义的说话人执行 zero_shot 推理"""
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_zero_shot_by_spk_id(i, spk_id)
|
||||
start_time = time.time()
|
||||
last_time = start_time
|
||||
chunk_index = 0
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech index:{}, len {:.2f}, rtf {:.3f}, cost {:.3f}s, all cost time {:.3f}s'.format(
|
||||
chunk_index, speech_len, (time.time()-last_time)/speech_len, time.time()-last_time, time.time()-start_time))
|
||||
yield model_output
|
||||
last_time = time.time()
|
||||
chunk_index += 1
|
||||
|
||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
||||
@@ -126,7 +145,7 @@ class CosyVoice:
|
||||
|
||||
class CosyVoice2(CosyVoice):
|
||||
|
||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False):
|
||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, use_vllm=False):
|
||||
self.instruct = True if '-Instruct' in model_dir else False
|
||||
self.model_dir = model_dir
|
||||
self.fp16 = fp16
|
||||
@@ -145,7 +164,14 @@ class CosyVoice2(CosyVoice):
|
||||
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
||||
load_jit, load_trt, fp16 = False, False, False
|
||||
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
||||
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
|
||||
if use_vllm:
|
||||
try:
|
||||
self.model = VllmCosyVoice2Model(model_dir, configs['flow'], configs['hift'], fp16)
|
||||
except Exception as e:
|
||||
logging.warning(f'use vllm inference failed. \n{e}')
|
||||
raise e
|
||||
else:
|
||||
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
|
||||
self.model.load('{}/llm.pt'.format(model_dir),
|
||||
'{}/flow.pt'.format(model_dir),
|
||||
'{}/hift.pt'.format(model_dir))
|
||||
@@ -171,3 +197,14 @@ class CosyVoice2(CosyVoice):
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_instruct2_by_spk_id(self, tts_text, instruct_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_instruct2_by_spk_id(i, instruct_text, spk_id)
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from functools import partial
|
||||
from typing import Generator
|
||||
from typing import Generator, Optional
|
||||
import json
|
||||
import onnxruntime
|
||||
import torch
|
||||
@@ -24,6 +24,8 @@ import torchaudio
|
||||
import os
|
||||
import re
|
||||
import inflect
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
||||
try:
|
||||
import ttsfrd
|
||||
use_ttsfrd = True
|
||||
@@ -36,6 +38,18 @@ from cosyvoice.utils.file_utils import logging
|
||||
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph, is_only_punctuation
|
||||
|
||||
|
||||
class SpeakerInfo(BaseModel):
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
name: Optional[str] = None
|
||||
spk_id: str
|
||||
prompt_text: str
|
||||
prompt_text_token: torch.Tensor
|
||||
speech_feat: torch.Tensor
|
||||
speech_token: torch.Tensor
|
||||
embedding: torch.Tensor
|
||||
|
||||
|
||||
class CosyVoiceFrontEnd:
|
||||
|
||||
def __init__(self,
|
||||
@@ -55,8 +69,9 @@ class CosyVoiceFrontEnd:
|
||||
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option,
|
||||
providers=["CUDAExecutionProvider" if torch.cuda.is_available() else
|
||||
"CPUExecutionProvider"])
|
||||
self.spk2info_path = spk2info
|
||||
if os.path.exists(spk2info):
|
||||
self.spk2info = torch.load(spk2info, map_location=self.device)
|
||||
self.spk2info = torch.load(spk2info, map_location=self.device, weights_only=False)
|
||||
else:
|
||||
self.spk2info = {}
|
||||
self.allowed_special = allowed_special
|
||||
@@ -68,7 +83,8 @@ class CosyVoiceFrontEnd:
|
||||
'failed to initialize ttsfrd resource'
|
||||
self.frd.set_lang_type('pinyinvg')
|
||||
else:
|
||||
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=True)
|
||||
# self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=True)
|
||||
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=False)
|
||||
self.en_tn_model = EnNormalizer()
|
||||
self.inflect_parser = inflect.engine()
|
||||
|
||||
@@ -86,8 +102,9 @@ class CosyVoiceFrontEnd:
|
||||
def _extract_text_token_generator(self, text_generator):
|
||||
for text in text_generator:
|
||||
text_token, _ = self._extract_text_token(text)
|
||||
for i in range(text_token.shape[1]):
|
||||
yield text_token[:, i: i + 1]
|
||||
# for i in range(text_token.shape[1]):
|
||||
# yield text_token[:, i: i + 1]
|
||||
yield text_token
|
||||
|
||||
def _extract_speech_token(self, speech):
|
||||
assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
|
||||
@@ -138,11 +155,15 @@ class CosyVoiceFrontEnd:
|
||||
text = text.replace(" - ", ",")
|
||||
text = remove_bracket(text)
|
||||
text = re.sub(r'[,,、]+$', '。', text)
|
||||
if not split:
|
||||
return text
|
||||
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
||||
token_min_n=60, merge_len=20, comma_split=False))
|
||||
else:
|
||||
text = self.en_tn_model.normalize(text)
|
||||
text = spell_out_number(text, self.inflect_parser)
|
||||
if not split:
|
||||
return text
|
||||
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
||||
token_min_n=60, merge_len=20, comma_split=False))
|
||||
texts = [i for i in texts if not is_only_punctuation(i)]
|
||||
@@ -151,6 +172,7 @@ class CosyVoiceFrontEnd:
|
||||
def frontend_sft(self, tts_text, spk_id):
|
||||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||||
embedding = self.spk2info[spk_id]['embedding']
|
||||
assert embedding is not None
|
||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||
return model_input
|
||||
|
||||
@@ -209,3 +231,60 @@ class CosyVoiceFrontEnd:
|
||||
'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
|
||||
'flow_embedding': embedding}
|
||||
return model_input
|
||||
|
||||
def generate_spk_info(self, spk_id: str, prompt_text: str, prompt_speech_16k: torch.Tensor, resample_rate:int=24000, name: str=None):
|
||||
assert isinstance(spk_id, str)
|
||||
assert spk_id not in self.spk2info, "spk_id already exists"
|
||||
prompt_text_token, _ = self._extract_text_token(prompt_text)
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
||||
speech_feat, _ = self._extract_speech_feat(prompt_speech_resample)
|
||||
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||||
if resample_rate == 24000:
|
||||
# cosyvoice2, force speech_feat % speech_token = 2
|
||||
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
||||
speech_feat = speech_feat[:, :2 * token_len]
|
||||
speech_token = speech_token[:, :token_len]
|
||||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||||
spk_info = SpeakerInfo(
|
||||
name=name,
|
||||
spk_id=spk_id,
|
||||
prompt_text=prompt_text,
|
||||
prompt_text_token=prompt_text_token,
|
||||
speech_feat=speech_feat,
|
||||
speech_token=speech_token,
|
||||
embedding=embedding,
|
||||
)
|
||||
self.add_spk_info(spk_id, spk_info)
|
||||
|
||||
def add_spk_info(self, spk_id: str, spk_info: dict|SpeakerInfo):
|
||||
if isinstance(spk_info, BaseModel):
|
||||
spk_info = spk_info.model_dump()
|
||||
self.spk2info[spk_id] = spk_info
|
||||
if self.spk2info_path:
|
||||
torch.save(self.spk2info, self.spk2info_path)
|
||||
|
||||
def frontend_instruct2_by_spk_id(self, tts_text, instruct_text, spk_id):
|
||||
assert spk_id in self.spk2info
|
||||
tts_text_token, _ = self._extract_text_token(tts_text)
|
||||
prompt_text_token, _ = self._extract_text_token(instruct_text + '<|endofprompt|>')
|
||||
model_input = {'text': tts_text_token,
|
||||
'prompt_text': prompt_text_token,
|
||||
'flow_prompt_speech_token': self.spk2info[spk_id]['speech_token'],
|
||||
'prompt_speech_feat': self.spk2info[spk_id]['speech_feat'],
|
||||
'llm_embedding': self.spk2info[spk_id]['embedding'],
|
||||
'flow_embedding': self.spk2info[spk_id]['embedding'],
|
||||
}
|
||||
return model_input
|
||||
|
||||
def frontend_zero_shot_by_spk_id(self, tts_text, spk_id):
|
||||
assert spk_id in self.spk2info
|
||||
tts_text_token, _ = self._extract_text_token(tts_text)
|
||||
model_input = {'text': tts_text_token,
|
||||
'prompt_text': self.spk2info[spk_id]['prompt_text_token'],
|
||||
'llm_prompt_speech_token': self.spk2info[spk_id]['speech_token'],
|
||||
'flow_prompt_speech_token': self.spk2info[spk_id]['speech_token'],
|
||||
'prompt_speech_feat': self.spk2info[spk_id]['speech_feat'],
|
||||
'llm_embedding': self.spk2info[spk_id]['embedding'],
|
||||
'flow_embedding': self.spk2info[spk_id]['embedding']
|
||||
}
|
||||
return model_input
|
||||
@@ -409,3 +409,26 @@ class CosyVoice2Model(CosyVoiceModel):
|
||||
self.tts_speech_token_dict.pop(this_uuid)
|
||||
self.llm_end_dict.pop(this_uuid)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
class VllmCosyVoice2Model(CosyVoice2Model):
|
||||
def __init__(self,
|
||||
model_dir: str,
|
||||
flow: torch.nn.Module,
|
||||
hift: torch.nn.Module,
|
||||
fp16: bool):
|
||||
try:
|
||||
from cosyvoice.llm.llm_vllm import VllmQwen2LM
|
||||
except Exception as e:
|
||||
raise e
|
||||
llm = VllmQwen2LM(model_dir)
|
||||
super().__init__(llm,flow,hift,fp16)
|
||||
|
||||
def load(self, llm_model, flow_model, hift_model):
|
||||
self.flow.load_state_dict(torch.load(flow_model, weights_only=True, map_location=self.device), strict=True)
|
||||
self.flow.to(self.device).eval()
|
||||
# in case hift_model is a hifigan model
|
||||
hift_state_dict = {k.replace('generator.', ''): v for k, v in
|
||||
torch.load(hift_model, weights_only=True, map_location=self.device).items()}
|
||||
self.hift.load_state_dict(hift_state_dict, strict=True)
|
||||
self.hift.to(self.device).eval()
|
||||
|
||||
Reference in New Issue
Block a user