diff --git a/runtime/triton_trtllm/README.md b/runtime/triton_trtllm/README.md index b1e091c..526bb63 100644 --- a/runtime/triton_trtllm/README.md +++ b/runtime/triton_trtllm/README.md @@ -1,15 +1,17 @@ -## Best Practices for Serving CosyVoice with NVIDIA Triton Inference Server +## Serving CosyVoice with NVIDIA Triton Inference Server -Thanks to the contribution from NVIDIA Yuekai Zhang. +Contributed by Yuekai Zhang (NVIDIA). ### Quick Start + Launch the service directly with Docker Compose: ```sh docker compose up ``` ### Build the Docker Image -Build the image from scratch: + +To build the image from scratch: ```sh docker build . -f Dockerfile.server -t soar97/triton-cosyvoice:25.06 ``` @@ -21,71 +23,89 @@ docker run -it --name "cosyvoice-server" --gpus all --net host -v $your_mount_di ``` ### Understanding `run.sh` + The `run.sh` script orchestrates the entire workflow through numbered stages. -Run a subset of stages with: +You can run a subset of stages with: ```sh bash run.sh [service_type] ``` -- `` – stage to start from (0-5). -- `` – stage to stop after (0-5). +- ``: The stage to start from (0-5). +- ``: The stage to stop after (0-5). -Stages: -- **Stage 0** – Download the cosyvoice-2 0.5B model from HuggingFace. -- **Stage 1** – Convert the HuggingFace checkpoint to TensorRT-LLM format and build TensorRT engines. -- **Stage 2** – Create the Triton model repository and configure the model files (adjusts depending on whether `Decoupled=True/False` will be used later). -- **Stage 3** – Launch the Triton Inference Server. -- **Stage 4** – Run the single-utterance HTTP client. -- **Stage 5** – Run the gRPC benchmark client. +**Stages:** + +- **Stage 0**: Downloads the `cosyvoice-2 0.5B` model from HuggingFace. +- **Stage 1**: Converts the HuggingFace checkpoint to the TensorRT-LLM format and builds the TensorRT engines. +- **Stage 2**: Creates the Triton model repository and configures the model files. The configuration is adjusted based on whether `Decoupled=True` (streaming) or `Decoupled=False` (offline) will be used. +- **Stage 3**: Launches the Triton Inference Server. +- **Stage 4**: Runs the single-utterance HTTP client for testing. +- **Stage 5**: Runs the gRPC benchmark client. + +### Export Models and Launch Server -### Export Models to TensorRT-LLM and Launch the Server Inside the Docker container, prepare the models and start the Triton server by running stages 0-3: ```sh -# Runs stages 0, 1, 2, and 3 +# This command runs stages 0, 1, 2, and 3 bash run.sh 0 3 ``` -*Note: Stage 2 prepares the model repository differently depending on whether you intend to run with `Decoupled=False` or `Decoupled=True`. Rerun stage 2 if you switch the service type.* +> [!TIP] +> Both streaming and offline (non-streaming) TTS modes are supported. For streaming TTS, set `Decoupled=True`. For offline TTS, set `Decoupled=False`. You need to rerun stage 2 if you switch between modes. ### Single-Utterance HTTP Client -Send a single HTTP inference request: + +Sends a single HTTP inference request. This is intended for testing the offline TTS mode (`Decoupled=False`): ```sh bash run.sh 4 4 ``` ### Benchmark with a Dataset -Benchmark the running Triton server. Pass either `streaming` or `offline` as the third argument. -```sh -bash run.sh 5 5 -# You can also customise parameters such as num_task and dataset split directly: +To benchmark the running Triton server, pass `streaming` or `offline` as the third argument: +```sh +bash run.sh 5 5 # [streaming|offline] + +# You can also customize parameters such as the number of tasks and the dataset split: # python3 client_grpc.py --num-tasks 2 --huggingface-dataset yuekai/seed_tts_cosy2 --split-name test_zh --mode [streaming|offline] ``` > [!TIP] -> Only offline CosyVoice TTS is currently supported. Setting the client to `streaming` simply enables NVIDIA Triton’s decoupled mode so that responses are returned as soon as they are ready. +> It is recommended to run the benchmark multiple times to get stable results after the initial server warm-up. ### Benchmark Results -Decoding on a single L20 GPU with 26 prompt_audio/target_text [pairs](https://huggingface.co/datasets/yuekai/seed_tts) (≈221 s of audio): +The following results were obtained by decoding on a single L20 GPU with 26 prompt audio/target text pairs from the [yuekai/seed_tts](https://huggingface.co/datasets/yuekai/seed_tts) dataset (approximately 170 seconds of audio): +**Streaming TTS (First Chunk Latency)** +| Mode | Concurrency | Avg Latency (ms) | P50 Latency (ms) | RTF | +|---|---|---|---|---| +| Streaming, Decoupled=True | 1 | 220.43 | 218.07 | 0.1237 | +| Streaming, Decoupled=True | 2 | 476.97 | 369.25 | 0.1022 | +| Streaming, Decoupled=True | 4 | 1107.34 | 1243.75| 0.0922 | + +**Offline TTS (Full Sentence Latency)** | Mode | Note | Concurrency | Avg Latency (ms) | P50 Latency (ms) | RTF | -|------|------|-------------|------------------|------------------|-----| -| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 758.04 | 615.79 | 0.0891 | -| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1025.93 | 901.68 | 0.0657 | -| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1914.13 | 1783.58 | 0.0610 | -| Decoupled=True | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 659.87 | 655.63 | 0.0891 | -| Decoupled=True | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1103.16 | 992.96 | 0.0693 | -| Decoupled=True | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1790.91 | 1668.63 | 0.0604 | +|---|---|---|---|---|---| +| Offline, Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 758.04 | 615.79 | 0.0891 | +| Offline, Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1025.93 | 901.68 | 0.0657 | +| Offline, Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1914.13 | 1783.58 | 0.0610 | ### OpenAI-Compatible Server -To launch an OpenAI-compatible service, run: + +To launch an OpenAI-compatible API service, run the following commands: ```sh git clone https://github.com/yuekaizhang/Triton-OpenAI-Speech.git +cd Triton-OpenAI-Speech pip install -r requirements.txt -# After the Triton service is up, start the FastAPI bridge: + +# After the Triton service is running, start the FastAPI bridge: python3 tts_server.py --url http://localhost:8000 --ref_audios_dir ./ref_audios/ --port 10086 --default_sample_rate 24000 -# Test with curl + +# Test the service with curl: bash test/test_cosyvoice.sh ``` +> [!NOTE] +> Currently, only the offline TTS mode is compatible with the OpenAI-compatible server. ### Acknowledgements -This section originates from the NVIDIA CISI project. We also provide other multimodal resources—see [mair-hub](https://github.com/nvidia-china-sae/mair-hub) for details. + +This work originates from the NVIDIA CISI project. For more multimodal resources, please see [mair-hub](https://github.com/nvidia-china-sae/mair-hub). diff --git a/runtime/triton_trtllm/client_grpc.py b/runtime/triton_trtllm/client_grpc.py index 881b519..136f795 100644 --- a/runtime/triton_trtllm/client_grpc.py +++ b/runtime/triton_trtllm/client_grpc.py @@ -395,38 +395,45 @@ def run_sync_streaming_inference( # Reconstruct audio using cross-fade (from client_grpc_streaming.py) actual_duration = 0 if audios: - cross_fade_samples = int(chunk_overlap_duration * save_sample_rate) - fade_out = np.linspace(1, 0, cross_fade_samples) - fade_in = np.linspace(0, 1, cross_fade_samples) - reconstructed_audio = None + # Only spark_tts model uses cross-fade + if model_name == "spark_tts": + cross_fade_samples = int(chunk_overlap_duration * save_sample_rate) + fade_out = np.linspace(1, 0, cross_fade_samples) + fade_in = np.linspace(0, 1, cross_fade_samples) + reconstructed_audio = None - # Simplified reconstruction based on client_grpc_streaming.py - if not audios: - print("Warning: No audio chunks received.") - reconstructed_audio = np.array([], dtype=np.float32) # Empty array - elif len(audios) == 1: - reconstructed_audio = audios[0] + # Simplified reconstruction based on client_grpc_streaming.py + if not audios: + print("Warning: No audio chunks received.") + reconstructed_audio = np.array([], dtype=np.float32) # Empty array + elif len(audios) == 1: + reconstructed_audio = audios[0] + else: + reconstructed_audio = audios[0][:-cross_fade_samples] # Start with first chunk minus overlap + for i in range(1, len(audios)): + # Cross-fade section + cross_faded_overlap = (audios[i][:cross_fade_samples] * fade_in + + audios[i - 1][-cross_fade_samples:] * fade_out) + # Middle section of the current chunk + middle_part = audios[i][cross_fade_samples:-cross_fade_samples] + # Concatenate + reconstructed_audio = np.concatenate([reconstructed_audio, cross_faded_overlap, middle_part]) + # Add the last part of the final chunk + reconstructed_audio = np.concatenate([reconstructed_audio, audios[-1][-cross_fade_samples:]]) + + if reconstructed_audio is not None and reconstructed_audio.size > 0: + actual_duration = len(reconstructed_audio) / save_sample_rate + # Save reconstructed audio + sf.write(audio_save_path, reconstructed_audio, save_sample_rate, "PCM_16") + else: + print("Warning: No audio chunks received or reconstructed.") + actual_duration = 0 # Set duration to 0 if no audio else: - reconstructed_audio = audios[0][:-cross_fade_samples] # Start with first chunk minus overlap - for i in range(1, len(audios)): - # Cross-fade section - cross_faded_overlap = (audios[i][:cross_fade_samples] * fade_in + - audios[i - 1][-cross_fade_samples:] * fade_out) - # Middle section of the current chunk - middle_part = audios[i][cross_fade_samples:-cross_fade_samples] - # Concatenate - reconstructed_audio = np.concatenate([reconstructed_audio, cross_faded_overlap, middle_part]) - # Add the last part of the final chunk - reconstructed_audio = np.concatenate([reconstructed_audio, audios[-1][-cross_fade_samples:]]) - - if reconstructed_audio is not None and reconstructed_audio.size > 0: + reconstructed_audio = np.concatenate(audios) + print(f"reconstructed_audio: {reconstructed_audio.shape}") actual_duration = len(reconstructed_audio) / save_sample_rate # Save reconstructed audio - os.makedirs(os.path.dirname(audio_save_path), exist_ok=True) sf.write(audio_save_path, reconstructed_audio, save_sample_rate, "PCM_16") - else: - print("Warning: No audio chunks received or reconstructed.") - actual_duration = 0 # Set duration to 0 if no audio else: print("Warning: No audio chunks received.") @@ -667,6 +674,7 @@ async def main(): manifest_item_list = split_data(manifest_item_list, num_tasks) os.makedirs(args.log_dir, exist_ok=True) + tasks = [] start_time = time.time() for i in range(num_tasks): diff --git a/runtime/triton_trtllm/model_repo/audio_tokenizer/1/model.py b/runtime/triton_trtllm/model_repo/audio_tokenizer/1/model.py index 47383e2..339cb0e 100644 --- a/runtime/triton_trtllm/model_repo/audio_tokenizer/1/model.py +++ b/runtime/triton_trtllm/model_repo/audio_tokenizer/1/model.py @@ -32,7 +32,7 @@ import triton_python_backend_utils as pb_utils import os import numpy as np import s3tokenizer - +torch.set_num_threads(1) ORIGINAL_VOCAB_SIZE = 151663 diff --git a/runtime/triton_trtllm/model_repo/audio_tokenizer/config.pbtxt b/runtime/triton_trtllm/model_repo/audio_tokenizer/config.pbtxt index 6d8bd0c..4bb972c 100644 --- a/runtime/triton_trtllm/model_repo/audio_tokenizer/config.pbtxt +++ b/runtime/triton_trtllm/model_repo/audio_tokenizer/config.pbtxt @@ -20,7 +20,7 @@ dynamic_batching { } parameters [ { - key: "model_dir", + key: "model_dir", value: {string_value:"${model_dir}"} } ] diff --git a/runtime/triton_trtllm/model_repo/cosyvoice2/1/model.py b/runtime/triton_trtllm/model_repo/cosyvoice2/1/model.py index 77a440b..e02faea 100644 --- a/runtime/triton_trtllm/model_repo/cosyvoice2/1/model.py +++ b/runtime/triton_trtllm/model_repo/cosyvoice2/1/model.py @@ -28,6 +28,8 @@ import json import math import os import re +import threading +import time from typing import Dict, List, Tuple, Optional, Union import numpy as np @@ -35,13 +37,14 @@ import torch from torch.utils.dlpack import from_dlpack, to_dlpack import triton_python_backend_utils as pb_utils from transformers import AutoTokenizer -import torchaudio.compliance.kaldi as kaldi + import torchaudio -import onnxruntime from matcha.utils.audio import mel_spectrogram +torch.set_num_threads(1) + class TritonPythonModel: """Triton Python model for Spark TTS. @@ -62,6 +65,8 @@ class TritonPythonModel: parameters = self.model_config['parameters'] model_params = {k: v["string_value"] for k, v in parameters.items()} self.logger.log_info(f"model_params:{model_params}") + self.dynamic_chunk_strategy = model_params.get("dynamic_chunk_strategy", "exponential") # "exponential" or "time_based" + self.logger.log_info(f"Using dynamic chunk strategy: {self.dynamic_chunk_strategy}") # Initialize tokenizer llm_tokenizer_dir = model_params["llm_tokenizer_dir"] @@ -72,11 +77,9 @@ class TritonPythonModel: self.device = torch.device("cuda") self.decoupled = pb_utils.using_decoupled_model_transaction_policy(self.model_config) - campplus_model = f'{model_params["model_dir"]}/campplus.onnx' - option = onnxruntime.SessionOptions() - option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL - option.intra_op_num_threads = 1 - self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"]) + self.token_frame_rate = 25 + self.flow_pre_lookahead_len = 3 + self.token_hop_len = 15 def forward_llm(self, input_ids): """ @@ -105,7 +108,7 @@ class TritonPythonModel: """ # convert input_ids to numpy, with shape [1, sequence_length] input_ids = input_ids.cpu().numpy() - max_tokens = 1024 + max_tokens = 750 input_dict = { "request_output_len": np.array([[max_tokens]], dtype=np.int32), "end_id": np.array([[self.eos_token_id]], dtype=np.int32), @@ -114,6 +117,8 @@ class TritonPythonModel: "runtime_top_p": np.array([[0.95]], dtype=np.float32), "runtime_top_k": np.array([[50]], dtype=np.int32), "temperature": np.array([[0.8]], dtype=np.float32), + "repetition_penalty": np.array([[1.1]], dtype=np.float32), + "random_seed": np.array([[42]], dtype=np.uint64), "input_ids": input_ids, "input_lengths": np.array([[input_ids.shape[1]]], dtype=np.int32), } @@ -188,12 +193,40 @@ class TritonPythonModel: return prompt_speech_tokens + def forward_speaker_embedding(self, wav): + """Forward pass through the speaker embedding component. + + Args: + wav: Input waveform tensor + + Returns: + Prompt speaker embedding tensor + """ + inference_request = pb_utils.InferenceRequest( + model_name='speaker_embedding', + requested_output_names=['prompt_spk_embedding'], + inputs=[pb_utils.Tensor.from_dlpack("reference_wav", to_dlpack(wav))] + ) + + inference_response = inference_request.exec() + if inference_response.has_error(): + raise pb_utils.TritonModelException(inference_response.error().message()) + + # Extract and convert output tensors + prompt_spk_embedding = pb_utils.get_output_tensor_by_name(inference_response, 'prompt_spk_embedding') + prompt_spk_embedding = torch.utils.dlpack.from_dlpack(prompt_spk_embedding.to_dlpack()) + + return prompt_spk_embedding + def forward_token2wav( self, prompt_speech_tokens: torch.Tensor, prompt_speech_feat: torch.Tensor, prompt_spk_embedding: torch.Tensor, - target_speech_tokens: torch.Tensor) -> torch.Tensor: + target_speech_tokens: torch.Tensor, + request_id: str, + token_offset: int = None, + finalize: bool = None) -> torch.Tensor: """Forward pass through the vocoder component. Args: @@ -210,11 +243,21 @@ class TritonPythonModel: prompt_spk_embedding_tensor = pb_utils.Tensor.from_dlpack("prompt_spk_embedding", to_dlpack(prompt_spk_embedding)) target_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("target_speech_tokens", to_dlpack(target_speech_tokens)) + inputs_tensor = [prompt_speech_tokens_tensor, prompt_speech_feat_tensor, prompt_spk_embedding_tensor, target_speech_tokens_tensor] + + if token_offset is not None: + assert finalize is not None + token_offset_tensor = pb_utils.Tensor("token_offset", np.array([[token_offset]], dtype=np.int32)) + finalize_tensor = pb_utils.Tensor("finalize", np.array([[finalize]], dtype=np.bool_)) + inputs_tensor.append(token_offset_tensor) + inputs_tensor.append(finalize_tensor) + # Create and execute inference request inference_request = pb_utils.InferenceRequest( model_name='token2wav', requested_output_names=['waveform'], - inputs=[prompt_speech_tokens_tensor, prompt_speech_feat_tensor, prompt_spk_embedding_tensor, target_speech_tokens_tensor] + inputs=inputs_tensor, + request_id=request_id, ) inference_response = inference_request.exec() @@ -235,17 +278,6 @@ class TritonPythonModel: input_ids = torch.cat([input_ids, prompt_speech_tokens], dim=1) return input_ids - def _extract_spk_embedding(self, speech): - feat = kaldi.fbank(speech, - num_mel_bins=80, - dither=0, - sample_frequency=16000) - feat = feat - feat.mean(dim=0, keepdim=True) - embedding = self.campplus_session.run(None, - {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist() - embedding = torch.tensor([embedding]).to(self.device).half() - return embedding - def _extract_speech_feat(self, speech): speech_feat = mel_spectrogram( speech, @@ -263,6 +295,14 @@ class TritonPythonModel: speech_feat = speech_feat.unsqueeze(dim=0) return speech_feat + def _llm_gen_thread(self, generated_ids_iter, semantic_token_ids_arr, llm_is_done_flag): + for generated_ids in generated_ids_iter: + generated_ids = generated_ids.tolist() + if len(generated_ids) == 0: + break + semantic_token_ids_arr.extend(generated_ids) + llm_is_done_flag[0] = True + def execute(self, requests): """Execute inference on the batched requests. @@ -275,6 +315,7 @@ class TritonPythonModel: responses = [] for request in requests: + request_id = request.request_id() # Extract input tensors wav = pb_utils.get_input_tensor_by_name(request, "reference_wav") wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len") @@ -292,6 +333,8 @@ class TritonPythonModel: prompt_speech_feat = speech_feat[:, :2 * token_len].contiguous().half() prompt_speech_tokens = prompt_speech_tokens[:, :token_len].contiguous() + flow_prompt_speech_token_len = prompt_speech_tokens.shape[-1] + reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy() reference_text = reference_text[0][0].decode('utf-8') @@ -307,25 +350,76 @@ class TritonPythonModel: # Generate semantic tokens with LLM generated_ids_iter = self.forward_llm(input_ids) + prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor) if self.decoupled: response_sender = request.get_response_sender() - request_id = request.request_id() - generated_ids = [] - for generated_id in generated_ids_iter: - # convert the numpy array into a int32 tensor - generated_id = generated_id.tolist() - if len(generated_id) > 0: - assert len(generated_id) == 1, "Generated ID is not a single integer" - generated_ids.append(generated_id[0]) - generated_ids = torch.tensor(generated_ids).unsqueeze(0).to(torch.int32).to(self.device) - prompt_spk_embedding = self._extract_spk_embedding(wav_tensor) - audio = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, generated_ids) - # Prepare response - audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio)) + semantic_token_ids_arr = [] + llm_is_done_flag = [False] + + llm_thread = threading.Thread( + target=self._llm_gen_thread, + args=(generated_ids_iter, semantic_token_ids_arr, llm_is_done_flag) + ) + + llm_thread.start() + + token_offset, chunk_index = 0, 0 + start_time = time.time() + this_token_hop_len = self.token_hop_len + + while True: + pending_num = len(semantic_token_ids_arr) - token_offset + + if llm_is_done_flag[0]: + break + + if pending_num >= this_token_hop_len + self.flow_pre_lookahead_len: + this_tts_speech_token = semantic_token_ids_arr[:token_offset + this_token_hop_len + self.flow_pre_lookahead_len] + this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device) + + sub_tts_speech = self.forward_token2wav( + prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, + this_tts_speech_token, request_id, token_offset, False) + + audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech)) + inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor]) + response_sender.send(inference_response) + + token_offset += this_token_hop_len + self.logger.log_info(f"chunk_index: {chunk_index}, current_token_hop_len: {this_token_hop_len}") + + if self.dynamic_chunk_strategy == "exponential": + this_token_hop_len = self.token_frame_rate * (2 ** chunk_index) + elif self.dynamic_chunk_strategy == "time_based": + # see https://github.com/qi-hua/async_cosyvoice/blob/main/model.py#L306 + cost_time = time.time() - start_time + duration = token_offset / self.token_frame_rate + if chunk_index > 0 and cost_time > 0: + avg_chunk_processing_time = cost_time / (chunk_index + 1) + if avg_chunk_processing_time > 0: + multiples = (duration - cost_time) / avg_chunk_processing_time + self.logger.log_info(f"multiples: {multiples}") + next_pending_num = len(semantic_token_ids_arr) - token_offset + if multiples > 4: + this_token_hop_len = (next_pending_num // self.token_hop_len + 1) * self.token_hop_len + elif multiples > 2: + this_token_hop_len = (next_pending_num // self.token_hop_len) * self.token_hop_len + else: + this_token_hop_len = self.token_hop_len + this_token_hop_len = max(self.token_hop_len, this_token_hop_len) + chunk_index += 1 + else: + time.sleep(0.02) + + this_tts_speech_token = torch.tensor(semantic_token_ids_arr).unsqueeze(dim=0).to(torch.int32).to(self.device) + sub_tts_speech = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, this_tts_speech_token, request_id, token_offset, True) + audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech)) inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor]) response_sender.send(inference_response) + + llm_thread.join() response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL) self.logger.log_info("send tritonserver_response_complete_final to end") else: @@ -334,8 +428,7 @@ class TritonPythonModel: if generated_ids is None or len(generated_ids) == 0: raise pb_utils.TritonModelException("Generated IDs is None or empty") - prompt_spk_embedding = self._extract_spk_embedding(wav_tensor) - audio = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, generated_ids) + audio = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, generated_ids, request_id) # Prepare response audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio)) diff --git a/runtime/triton_trtllm/model_repo/cosyvoice2/config.pbtxt b/runtime/triton_trtllm/model_repo/cosyvoice2/config.pbtxt index c370336..f80e437 100644 --- a/runtime/triton_trtllm/model_repo/cosyvoice2/config.pbtxt +++ b/runtime/triton_trtllm/model_repo/cosyvoice2/config.pbtxt @@ -23,11 +23,11 @@ model_transaction_policy { } parameters [ { - key: "llm_tokenizer_dir", + key: "llm_tokenizer_dir", value: {string_value:"${llm_tokenizer_dir}"} }, { - key: "model_dir", + key: "model_dir", value: {string_value:"${model_dir}"} } ] diff --git a/runtime/triton_trtllm/model_repo/speaker_embedding/1/model.py b/runtime/triton_trtllm/model_repo/speaker_embedding/1/model.py new file mode 100644 index 0000000..1a7293a --- /dev/null +++ b/runtime/triton_trtllm/model_repo/speaker_embedding/1/model.py @@ -0,0 +1,153 @@ +# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# * Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# * Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in the +# documentation and/or other materials provided with the distribution. +# * Neither the name of NVIDIA CORPORATION nor the names of its +# contributors may be used to endorse or promote products derived +# from this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY +# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR +# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +import json +import torch +from torch.utils.dlpack import to_dlpack + +import triton_python_backend_utils as pb_utils + +import os +import numpy as np +import torchaudio.compliance.kaldi as kaldi +from cosyvoice.utils.file_utils import convert_onnx_to_trt +from cosyvoice.utils.common import TrtContextWrapper +import onnxruntime + + +class TritonPythonModel: + """Triton Python model for audio tokenization. + + This model takes reference audio input and extracts semantic tokens + using s3tokenizer. + """ + + def initialize(self, args): + """Initialize the model. + + Args: + args: Dictionary containing model configuration + """ + # Parse model parameters + parameters = json.loads(args['model_config'])['parameters'] + model_params = {k: v["string_value"] for k, v in parameters.items()} + + self.device = torch.device("cuda") + + model_dir = model_params["model_dir"] + gpu = "l20" + enable_trt = True + if enable_trt: + self.load_spk_trt(f'{model_dir}/campplus.{gpu}.fp32.trt', + f'{model_dir}/campplus.onnx', + 1, + False) + else: + campplus_model = f'{model_dir}/campplus.onnx' + option = onnxruntime.SessionOptions() + option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL + option.intra_op_num_threads = 1 + self.spk_model = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"]) + + def load_spk_trt(self, spk_model, spk_onnx_model, trt_concurrent=1, fp16=True): + if not os.path.exists(spk_model) or os.path.getsize(spk_model) == 0: + trt_kwargs = self.get_spk_trt_kwargs() + convert_onnx_to_trt(spk_model, trt_kwargs, spk_onnx_model, fp16) + import tensorrt as trt + with open(spk_model, 'rb') as f: + spk_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read()) + assert spk_engine is not None, 'failed to load trt {}'.format(spk_model) + self.spk_model = TrtContextWrapper(spk_engine, trt_concurrent=trt_concurrent, device=self.device) + + def get_spk_trt_kwargs(self): + min_shape = [(1, 4, 80)] + opt_shape = [(1, 500, 80)] + max_shape = [(1, 3000, 80)] + input_names = ["input"] + return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names} + + def _extract_spk_embedding(self, speech): + feat = kaldi.fbank(speech, + num_mel_bins=80, + dither=0, + sample_frequency=16000) + spk_feat = feat - feat.mean(dim=0, keepdim=True) + + if isinstance(self.spk_model, onnxruntime.InferenceSession): + embedding = self.spk_model.run( + None, {self.spk_model.get_inputs()[0].name: spk_feat.unsqueeze(dim=0).cpu().numpy()} + )[0].flatten().tolist() + embedding = torch.tensor([embedding]).to(self.device) + else: + [spk_model, stream], trt_engine = self.spk_model.acquire_estimator() + # NOTE need to synchronize when switching stream + with torch.cuda.device(self.device): + torch.cuda.current_stream().synchronize() + spk_feat = spk_feat.unsqueeze(dim=0).to(self.device) + batch_size = spk_feat.size(0) + + with stream: + spk_model.set_input_shape('input', (batch_size, spk_feat.size(1), 80)) + embedding = torch.empty((batch_size, 192), device=spk_feat.device) + + data_ptrs = [spk_feat.contiguous().data_ptr(), + embedding.contiguous().data_ptr()] + for i, j in enumerate(data_ptrs): + + spk_model.set_tensor_address(trt_engine.get_tensor_name(i), j) + # run trt engine + assert spk_model.execute_async_v3(torch.cuda.current_stream().cuda_stream) is True + torch.cuda.current_stream().synchronize() + self.spk_model.release_estimator(spk_model, stream) + + return embedding.half() + + def execute(self, requests): + """Execute inference on the batched requests. + + Args: + requests: List of inference requests + + Returns: + List of inference responses containing tokenized outputs + """ + responses = [] + # Process each request in batch + for request in requests: + # Extract input tensors + wav_array = pb_utils.get_input_tensor_by_name( + request, "reference_wav").as_numpy() + wav_array = torch.from_numpy(wav_array).to(self.device) + + embedding = self._extract_spk_embedding(wav_array) + + prompt_spk_embedding_tensor = pb_utils.Tensor.from_dlpack( + "prompt_spk_embedding", to_dlpack(embedding)) + inference_response = pb_utils.InferenceResponse( + output_tensors=[prompt_spk_embedding_tensor]) + + responses.append(inference_response) + + return responses diff --git a/runtime/triton_trtllm/model_repo/speaker_embedding/config.pbtxt b/runtime/triton_trtllm/model_repo/speaker_embedding/config.pbtxt new file mode 100644 index 0000000..fd91bd6 --- /dev/null +++ b/runtime/triton_trtllm/model_repo/speaker_embedding/config.pbtxt @@ -0,0 +1,48 @@ +# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +name: "speaker_embedding" +backend: "python" +max_batch_size: ${triton_max_batch_size} +dynamic_batching { + max_queue_delay_microseconds: ${max_queue_delay_microseconds} +} +parameters [ + { + key: "model_dir", + value: {string_value:"${model_dir}"} + } +] + +input [ + { + name: "reference_wav" + data_type: TYPE_FP32 + dims: [-1] + } +] +output [ + { + name: "prompt_spk_embedding" + data_type: TYPE_FP16 + dims: [-1] + } +] + +instance_group [ + { + count: 1 + kind: KIND_CPU + } +] \ No newline at end of file diff --git a/runtime/triton_trtllm/model_repo/token2wav/1/model.py b/runtime/triton_trtllm/model_repo/token2wav/1/model.py index d38f8a4..b356fe3 100644 --- a/runtime/triton_trtllm/model_repo/token2wav/1/model.py +++ b/runtime/triton_trtllm/model_repo/token2wav/1/model.py @@ -32,22 +32,27 @@ from typing import List, Dict import torch from torch.utils.dlpack import to_dlpack +from torch.nn import functional as F import triton_python_backend_utils as pb_utils from hyperpyyaml import load_hyperpyyaml +from cosyvoice.utils.common import fade_in_out from cosyvoice.utils.file_utils import convert_onnx_to_trt, export_cosyvoice2_vllm from cosyvoice.utils.common import TrtContextWrapper +from collections import defaultdict +import numpy as np logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) ORIGINAL_VOCAB_SIZE = 151663 +torch.set_num_threads(1) class CosyVoice2: - def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1): + def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1, device='cuda'): self.model_dir = model_dir self.fp16 = fp16 @@ -57,7 +62,7 @@ class CosyVoice2: raise ValueError('{} not found!'.format(hyper_yaml_path)) with open(hyper_yaml_path, 'r') as f: configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')}) - self.model = CosyVoice2Model(configs['flow'], configs['hift'], fp16) + self.model = CosyVoice2Model(configs['flow'], configs['hift'], fp16, device) self.model.load('{}/flow.pt'.format(model_dir), '{}/hift.pt'.format(model_dir)) if load_jit: self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32')) @@ -73,14 +78,22 @@ class CosyVoice2Model: def __init__(self, flow: torch.nn.Module, hift: torch.nn.Module, - fp16: bool = False): - self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + fp16: bool = False, + device: str = 'cuda'): + self.device = device self.flow = flow self.hift = hift self.fp16 = fp16 if self.fp16 is True: self.flow.half() + # streaming tts config + self.token_hop_len = 25 + self.mel_cache_len = 8 + self.source_cache_len = int(self.mel_cache_len * 480) + self.speech_window = np.hamming(2 * self.source_cache_len) + self.hift_cache_dict = defaultdict(lambda: None) + def load_jit(self, flow_encoder_model): flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device) self.flow.encoder = flow_encoder @@ -111,6 +124,42 @@ class CosyVoice2Model: input_names = ["x", "mask", "mu", "cond"] return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names} + def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0): + with torch.cuda.amp.autocast(self.fp16): + tts_mel, _ = self.flow.inference(token=token.to(self.device), + token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device), + prompt_token=prompt_token.to(self.device), + prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device), + prompt_feat=prompt_feat.to(self.device), + prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device), + embedding=embedding.to(self.device), + streaming=stream, + finalize=finalize) + tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:] + # append hift cache + if self.hift_cache_dict[uuid] is not None: + hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source'] + tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2) + else: + hift_cache_source = torch.zeros(1, 1, 0) + # keep overlap mel and hift cache + if finalize is False: + tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source) + if self.hift_cache_dict[uuid] is not None: + tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) + self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:], + 'source': tts_source[:, :, -self.source_cache_len:], + 'speech': tts_speech[:, -self.source_cache_len:]} + tts_speech = tts_speech[:, :-self.source_cache_len] + else: + if speed != 1.0: + assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode' + tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear') + tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source) + if self.hift_cache_dict[uuid] is not None: + tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) + return tts_speech + class TritonPythonModel: """Triton Python model for vocoder. @@ -131,11 +180,11 @@ class TritonPythonModel: model_dir = model_params["model_dir"] # Initialize device and vocoder - self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") logger.info(f"Initializing vocoder from {model_dir} on {self.device}") self.token2wav_model = CosyVoice2( - model_dir, load_jit=True, load_trt=True, fp16=True + model_dir, load_jit=False, load_trt=True, fp16=True, device=self.device ) logger.info("Token2Wav initialized successfully") @@ -166,25 +215,47 @@ class TritonPythonModel: prompt_speech_tokens = prompt_speech_tokens - ORIGINAL_VOCAB_SIZE target_speech_tokens = target_speech_tokens - ORIGINAL_VOCAB_SIZE - tts_mel, _ = self.token2wav_model.model.flow.inference( - token=target_speech_tokens, - token_len=torch.tensor([target_speech_tokens.shape[1]], dtype=torch.int32).to( - self.device - ), - prompt_token=prompt_speech_tokens, - prompt_token_len=torch.tensor( - [prompt_speech_tokens.shape[1]], dtype=torch.int32 - ).to(self.device), - prompt_feat=prompt_speech_feat, - prompt_feat_len=torch.tensor([prompt_speech_feat.shape[1]], dtype=torch.int32).to(self.device), - embedding=prompt_spk_embedding, - streaming=False, - finalize=True, - ) + # We set token_offset as an optional input to support streaming/offline tts. It has to be None when offline tts. + token_offset = pb_utils.get_input_tensor_by_name(request, "token_offset") + if token_offset is not None: + token_offset = token_offset.as_numpy().item() + finalize = pb_utils.get_input_tensor_by_name(request, "finalize").as_numpy().item() + if not finalize: + stream = True + else: + stream = False + request_id = request.request_id() + audio_hat = self.token2wav_model.model.token2wav(token=target_speech_tokens, + prompt_token=prompt_speech_tokens, + prompt_feat=prompt_speech_feat, + embedding=prompt_spk_embedding, + token_offset=token_offset, + uuid=request_id, + stream=stream, + finalize=finalize) + if finalize: + self.token2wav_model.model.hift_cache_dict.pop(request_id) - audio_hat, _ = self.token2wav_model.model.hift.inference( - speech_feat=tts_mel, cache_source=torch.zeros(1, 1, 0) - ) + else: + tts_mel, _ = self.token2wav_model.model.flow.inference( + token=target_speech_tokens, + token_len=torch.tensor([target_speech_tokens.shape[1]], dtype=torch.int32).to( + self.device + ), + prompt_token=prompt_speech_tokens, + prompt_token_len=torch.tensor( + [prompt_speech_tokens.shape[1]], dtype=torch.int32 + ).to(self.device), + prompt_feat=prompt_speech_feat, + prompt_feat_len=torch.tensor([prompt_speech_feat.shape[1]], dtype=torch.int32).to(self.device), + embedding=prompt_spk_embedding, + streaming=False, + finalize=True, + ) + + audio_hat, _ = self.token2wav_model.model.hift.inference( + speech_feat=tts_mel, cache_source=torch.zeros(1, 1, 0) + ) generated_wave = audio_hat.squeeze(0).cpu().numpy() diff --git a/runtime/triton_trtllm/model_repo/token2wav/config.pbtxt b/runtime/triton_trtllm/model_repo/token2wav/config.pbtxt index 36489ff..e952ec6 100644 --- a/runtime/triton_trtllm/model_repo/token2wav/config.pbtxt +++ b/runtime/triton_trtllm/model_repo/token2wav/config.pbtxt @@ -20,7 +20,7 @@ dynamic_batching { } parameters [ { - key: "model_dir", + key: "model_dir", value: {string_value:"${model_dir}"} } ] @@ -45,6 +45,20 @@ input [ name: "prompt_spk_embedding" data_type: TYPE_FP16 dims: [-1] + }, + { + name: "token_offset" + data_type: TYPE_INT32 + dims: [ 1 ] + reshape: { shape: [ ] } + optional: true + }, + { + name: "finalize" + data_type: TYPE_BOOL + dims: [ 1 ] + reshape: { shape: [ ] } + optional: true } ] output [ diff --git a/runtime/triton_trtllm/run.sh b/runtime/triton_trtllm/run.sh index 2e81896..c2c275c 100644 --- a/runtime/triton_trtllm/run.sh +++ b/runtime/triton_trtllm/run.sh @@ -60,6 +60,7 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then cp -r ./model_repo/audio_tokenizer $model_repo cp -r ./model_repo/tensorrt_llm $model_repo cp -r ./model_repo/token2wav $model_repo + cp -r ./model_repo/speaker_embedding $model_repo ENGINE_PATH=$trt_engines_dir MAX_QUEUE_DELAY_MICROSECONDS=0 @@ -67,11 +68,12 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then LLM_TOKENIZER_DIR=$huggingface_model_local_dir BLS_INSTANCE_NUM=4 TRITON_MAX_BATCH_SIZE=16 - DECOUPLED_MODE=False + DECOUPLED_MODE=True # True for streaming, False for offline python3 scripts/fill_template.py -i ${model_repo}/token2wav/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} python3 scripts/fill_template.py -i ${model_repo}/audio_tokenizer/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} python3 scripts/fill_template.py -i ${model_repo}/${cosyvoice2_dir}/config.pbtxt model_dir:${MODEL_DIR},bls_instance_num:${BLS_INSTANCE_NUM},llm_tokenizer_dir:${LLM_TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} + python3 scripts/fill_template.py -i ${model_repo}/speaker_embedding/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} python3 scripts/fill_template.py -i ${model_repo}/tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_beam_width:1,engine_dir:${ENGINE_PATH},max_tokens_in_paged_kv_cache:2560,max_attention_window_size:2560,kv_cache_free_gpu_mem_fraction:0.5,exclude_input_in_output:True,enable_kv_cache_reuse:False,batching_strategy:inflight_fused_batching,max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS},encoder_input_features_data_type:TYPE_FP16,logits_datatype:TYPE_FP32 fi @@ -82,7 +84,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then - echo "Single request test http" + echo "Single request test http, only work for offline TTS mode" python3 client_http.py \ --reference-audio ./assets/prompt_audio.wav \ --reference-text "吃燕窝就选燕之屋,本节目由26年专注高品质燕窝的燕之屋冠名播出。豆奶牛奶换着喝,营养更均衡,本节目由豆本豆豆奶特约播出。" \ @@ -92,15 +94,16 @@ fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then echo "Running benchmark client grpc" - num_task=4 - # set mode=streaming, when decoupled=True - # set mode=offline, when decoupled=False - mode=offline + num_task=1 + + mode=streaming + BLS_INSTANCE_NUM=4 + python3 client_grpc.py \ --server-addr localhost \ --model-name cosyvoice2 \ --num-tasks $num_task \ --mode $mode \ --huggingface-dataset yuekai/seed_tts_cosy2 \ - --log-dir ./log_concurrent_tasks_${num_task}_${mode}_bls_4_${trt_dtype} -fi \ No newline at end of file + --log-dir ./log_concurrent_tasks_${num_task}_${mode}_bls_${BLS_INSTANCE_NUM} +fi