mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
Refactor CosyVoice inference methods to streamline CUDA stream management
- Removed the queue-based stream pool and integrated direct CUDA stream usage for improved performance. - Simplified inference methods by eliminating unnecessary synchronization and stream management code. - Enhanced logging for better tracking of synthesis operations and performance metrics. - Updated the model class to support CUDA stream context management, ensuring efficient resource utilization during inference.
This commit is contained in:
@@ -22,7 +22,7 @@ from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
|||||||
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model, VllmCosyVoice2Model
|
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model, VllmCosyVoice2Model
|
||||||
from cosyvoice.utils.file_utils import logging
|
from cosyvoice.utils.file_utils import logging
|
||||||
from cosyvoice.utils.class_utils import get_model_type
|
from cosyvoice.utils.class_utils import get_model_type
|
||||||
import queue
|
|
||||||
|
|
||||||
class CosyVoice:
|
class CosyVoice:
|
||||||
|
|
||||||
@@ -60,11 +60,6 @@ class CosyVoice:
|
|||||||
self.fp16, self.estimator_count)
|
self.fp16, self.estimator_count)
|
||||||
del configs
|
del configs
|
||||||
|
|
||||||
thread_count = 10
|
|
||||||
self.stream_pool = queue.Queue(maxsize=thread_count)
|
|
||||||
for _ in range(thread_count):
|
|
||||||
self.stream_pool.put(torch.cuda.Stream(self.device))
|
|
||||||
|
|
||||||
|
|
||||||
def list_available_spks(self):
|
def list_available_spks(self):
|
||||||
spks = list(self.frontend.spk2info.keys())
|
spks = list(self.frontend.spk2info.keys())
|
||||||
@@ -74,8 +69,6 @@ class CosyVoice:
|
|||||||
self.frontend.add_spk_info(spk_id, spk_info)
|
self.frontend.add_spk_info(spk_id, spk_info)
|
||||||
|
|
||||||
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
||||||
cuda_stream = self.stream_pool.get()
|
|
||||||
with torch.cuda.stream(cuda_stream):
|
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
model_input = self.frontend.frontend_sft(i, spk_id)
|
model_input = self.frontend.frontend_sft(i, spk_id)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
@@ -85,12 +78,8 @@ class CosyVoice:
|
|||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
cuda_stream.synchronize()
|
|
||||||
self.stream_pool.put(cuda_stream)
|
|
||||||
|
|
||||||
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||||
cuda_stream = self.stream_pool.get()
|
|
||||||
with torch.cuda.stream(cuda_stream):
|
|
||||||
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
|
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
|
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
|
||||||
@@ -103,13 +92,9 @@ class CosyVoice:
|
|||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
cuda_stream.synchronize()
|
|
||||||
self.stream_pool.put(cuda_stream)
|
|
||||||
|
|
||||||
def inference_zero_shot_by_spk_id(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
def inference_zero_shot_by_spk_id(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
||||||
"""使用预定义的说话人执行 zero_shot 推理"""
|
"""使用预定义的说话人执行 zero_shot 推理"""
|
||||||
cuda_stream = self.stream_pool.get()
|
|
||||||
with torch.cuda.stream(cuda_stream):
|
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
model_input = self.frontend.frontend_zero_shot_by_spk_id(i, spk_id)
|
model_input = self.frontend.frontend_zero_shot_by_spk_id(i, spk_id)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
@@ -123,12 +108,8 @@ class CosyVoice:
|
|||||||
yield model_output
|
yield model_output
|
||||||
last_time = time.time()
|
last_time = time.time()
|
||||||
chunk_index += 1
|
chunk_index += 1
|
||||||
cuda_stream.synchronize()
|
|
||||||
self.stream_pool.put(cuda_stream)
|
|
||||||
|
|
||||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||||
cuda_stream = self.stream_pool.get()
|
|
||||||
with torch.cuda.stream(cuda_stream):
|
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
@@ -138,12 +119,8 @@ class CosyVoice:
|
|||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
cuda_stream.synchronize()
|
|
||||||
self.stream_pool.put(cuda_stream)
|
|
||||||
|
|
||||||
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
||||||
cuda_stream = self.stream_pool.get()
|
|
||||||
with torch.cuda.stream(cuda_stream):
|
|
||||||
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
|
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
|
||||||
if self.instruct is False:
|
if self.instruct is False:
|
||||||
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
||||||
@@ -157,12 +134,8 @@ class CosyVoice:
|
|||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
cuda_stream.synchronize()
|
|
||||||
self.stream_pool.put(cuda_stream)
|
|
||||||
|
|
||||||
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
||||||
cuda_stream = self.stream_pool.get()
|
|
||||||
with torch.cuda.stream(cuda_stream):
|
|
||||||
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
|
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
|
||||||
@@ -170,8 +143,6 @@ class CosyVoice:
|
|||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
cuda_stream.synchronize()
|
|
||||||
self.stream_pool.put(cuda_stream)
|
|
||||||
|
|
||||||
|
|
||||||
class CosyVoice2(CosyVoice):
|
class CosyVoice2(CosyVoice):
|
||||||
@@ -215,17 +186,11 @@ class CosyVoice2(CosyVoice):
|
|||||||
self.fp16, self.estimator_count)
|
self.fp16, self.estimator_count)
|
||||||
del configs
|
del configs
|
||||||
|
|
||||||
thread_count = 10
|
|
||||||
self.stream_pool = queue.Queue(maxsize=thread_count)
|
|
||||||
for _ in range(thread_count):
|
|
||||||
self.stream_pool.put(torch.cuda.Stream(self.device))
|
|
||||||
|
|
||||||
def inference_instruct(self, *args, **kwargs):
|
def inference_instruct(self, *args, **kwargs):
|
||||||
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
|
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
|
||||||
|
|
||||||
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||||
cuda_stream = self.stream_pool.get()
|
|
||||||
with torch.cuda.stream(cuda_stream):
|
|
||||||
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
||||||
@@ -236,13 +201,8 @@ class CosyVoice2(CosyVoice):
|
|||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
cuda_stream.synchronize()
|
|
||||||
self.stream_pool.put(cuda_stream)
|
|
||||||
|
|
||||||
def inference_instruct2_by_spk_id(self, tts_text, instruct_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
def inference_instruct2_by_spk_id(self, tts_text, instruct_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
||||||
cuda_stream = self.stream_pool.get()
|
|
||||||
with torch.cuda.stream(cuda_stream):
|
|
||||||
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
model_input = self.frontend.frontend_instruct2_by_spk_id(i, instruct_text, spk_id)
|
model_input = self.frontend.frontend_instruct2_by_spk_id(i, instruct_text, spk_id)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
@@ -252,5 +212,3 @@ class CosyVoice2(CosyVoice):
|
|||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
cuda_stream.synchronize()
|
|
||||||
self.stream_pool.put(cuda_stream)
|
|
||||||
|
|||||||
@@ -23,6 +23,7 @@ import uuid
|
|||||||
from cosyvoice.utils.common import fade_in_out
|
from cosyvoice.utils.common import fade_in_out
|
||||||
from cosyvoice.utils.file_utils import convert_onnx_to_trt
|
from cosyvoice.utils.file_utils import convert_onnx_to_trt
|
||||||
from cosyvoice.flow.flow_matching import EstimatorWrapper
|
from cosyvoice.flow.flow_matching import EstimatorWrapper
|
||||||
|
import queue
|
||||||
|
|
||||||
class CosyVoiceModel:
|
class CosyVoiceModel:
|
||||||
|
|
||||||
@@ -66,6 +67,12 @@ class CosyVoiceModel:
|
|||||||
self.flow_cache_dict = {}
|
self.flow_cache_dict = {}
|
||||||
self.hift_cache_dict = {}
|
self.hift_cache_dict = {}
|
||||||
|
|
||||||
|
self.stream_context_pool = queue.Queue()
|
||||||
|
for _ in range(10):
|
||||||
|
self.stream_context_pool.put(torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext())
|
||||||
|
|
||||||
|
self.is_cuda_available = torch.cuda.is_available()
|
||||||
|
|
||||||
def load(self, llm_model, flow_model, hift_model):
|
def load(self, llm_model, flow_model, hift_model):
|
||||||
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
||||||
self.llm.to(self.device).eval()
|
self.llm.to(self.device).eval()
|
||||||
@@ -166,6 +173,10 @@ class CosyVoiceModel:
|
|||||||
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||||
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
||||||
# this_uuid is used to track variables related to this inference thread
|
# this_uuid is used to track variables related to this inference thread
|
||||||
|
|
||||||
|
stream_context = self.stream_context_pool.get()
|
||||||
|
with stream_context:
|
||||||
|
|
||||||
this_uuid = str(uuid.uuid1())
|
this_uuid = str(uuid.uuid1())
|
||||||
with self.lock:
|
with self.lock:
|
||||||
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
||||||
@@ -222,6 +233,9 @@ class CosyVoiceModel:
|
|||||||
self.mel_overlap_dict.pop(this_uuid)
|
self.mel_overlap_dict.pop(this_uuid)
|
||||||
self.hift_cache_dict.pop(this_uuid)
|
self.hift_cache_dict.pop(this_uuid)
|
||||||
self.flow_cache_dict.pop(this_uuid)
|
self.flow_cache_dict.pop(this_uuid)
|
||||||
|
|
||||||
|
self.synchronize_stream()
|
||||||
|
self.stream_context_pool.put(stream_context)
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
|
def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
|
||||||
@@ -278,6 +292,10 @@ class CosyVoiceModel:
|
|||||||
self.hift_cache_dict.pop(this_uuid)
|
self.hift_cache_dict.pop(this_uuid)
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
def synchronize_stream(self):
|
||||||
|
if self.is_cuda_available:
|
||||||
|
torch.cuda.current_stream().synchronize()
|
||||||
|
|
||||||
|
|
||||||
class CosyVoice2Model(CosyVoiceModel):
|
class CosyVoice2Model(CosyVoiceModel):
|
||||||
|
|
||||||
@@ -314,6 +332,12 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
self.llm_end_dict = {}
|
self.llm_end_dict = {}
|
||||||
self.hift_cache_dict = {}
|
self.hift_cache_dict = {}
|
||||||
|
|
||||||
|
self.stream_context_pool = queue.Queue()
|
||||||
|
for _ in range(10):
|
||||||
|
self.stream_context_pool.put(torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext())
|
||||||
|
|
||||||
|
self.is_cuda_available = torch.cuda.is_available()
|
||||||
|
|
||||||
def load_jit(self, flow_encoder_model):
|
def load_jit(self, flow_encoder_model):
|
||||||
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||||
self.flow.encoder = flow_encoder
|
self.flow.encoder = flow_encoder
|
||||||
@@ -359,6 +383,10 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||||
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
||||||
# this_uuid is used to track variables related to this inference thread
|
# this_uuid is used to track variables related to this inference thread
|
||||||
|
self.synchronize_stream()
|
||||||
|
stream_context = self.stream_context_pool.get()
|
||||||
|
with torch.cuda.stream(stream_context):
|
||||||
|
|
||||||
this_uuid = str(uuid.uuid1())
|
this_uuid = str(uuid.uuid1())
|
||||||
with self.lock:
|
with self.lock:
|
||||||
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
||||||
@@ -409,6 +437,9 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
with self.lock:
|
with self.lock:
|
||||||
self.tts_speech_token_dict.pop(this_uuid)
|
self.tts_speech_token_dict.pop(this_uuid)
|
||||||
self.llm_end_dict.pop(this_uuid)
|
self.llm_end_dict.pop(this_uuid)
|
||||||
|
|
||||||
|
self.synchronize_stream()
|
||||||
|
self.stream_context_pool.put(stream_context)
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user