Refactor CosyVoice inference methods to streamline CUDA stream management

- Removed the queue-based stream pool and integrated direct CUDA stream usage for improved performance.
- Simplified inference methods by eliminating unnecessary synchronization and stream management code.
- Enhanced logging for better tracking of synthesis operations and performance metrics.
- Updated the model class to support CUDA stream context management, ensuring efficient resource utilization during inference.
This commit is contained in:
禾息
2025-04-16 14:15:14 +08:00
parent fd9b7d45e2
commit 7f4c9a2c64
2 changed files with 226 additions and 237 deletions

View File

@@ -22,7 +22,7 @@ from cosyvoice.cli.frontend import CosyVoiceFrontEnd
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model, VllmCosyVoice2Model from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model, VllmCosyVoice2Model
from cosyvoice.utils.file_utils import logging from cosyvoice.utils.file_utils import logging
from cosyvoice.utils.class_utils import get_model_type from cosyvoice.utils.class_utils import get_model_type
import queue
class CosyVoice: class CosyVoice:
@@ -60,11 +60,6 @@ class CosyVoice:
self.fp16, self.estimator_count) self.fp16, self.estimator_count)
del configs del configs
thread_count = 10
self.stream_pool = queue.Queue(maxsize=thread_count)
for _ in range(thread_count):
self.stream_pool.put(torch.cuda.Stream(self.device))
def list_available_spks(self): def list_available_spks(self):
spks = list(self.frontend.spk2info.keys()) spks = list(self.frontend.spk2info.keys())
@@ -74,8 +69,6 @@ class CosyVoice:
self.frontend.add_spk_info(spk_id, spk_info) self.frontend.add_spk_info(spk_id, spk_info)
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True): def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)): for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_sft(i, spk_id) model_input = self.frontend.frontend_sft(i, spk_id)
start_time = time.time() start_time = time.time()
@@ -85,12 +78,8 @@ class CosyVoice:
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output yield model_output
start_time = time.time() start_time = time.time()
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True): def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend) prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)): for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text): if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
@@ -103,13 +92,9 @@ class CosyVoice:
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output yield model_output
start_time = time.time() start_time = time.time()
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)
def inference_zero_shot_by_spk_id(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True): def inference_zero_shot_by_spk_id(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
"""使用预定义的说话人执行 zero_shot 推理""" """使用预定义的说话人执行 zero_shot 推理"""
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)): for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_zero_shot_by_spk_id(i, spk_id) model_input = self.frontend.frontend_zero_shot_by_spk_id(i, spk_id)
start_time = time.time() start_time = time.time()
@@ -123,12 +108,8 @@ class CosyVoice:
yield model_output yield model_output
last_time = time.time() last_time = time.time()
chunk_index += 1 chunk_index += 1
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True): def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)): for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate) model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
start_time = time.time() start_time = time.time()
@@ -138,12 +119,8 @@ class CosyVoice:
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output yield model_output
start_time = time.time() start_time = time.time()
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True): def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!' assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
if self.instruct is False: if self.instruct is False:
raise ValueError('{} do not support instruct inference'.format(self.model_dir)) raise ValueError('{} do not support instruct inference'.format(self.model_dir))
@@ -157,12 +134,8 @@ class CosyVoice:
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output yield model_output
start_time = time.time() start_time = time.time()
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0): def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate) model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
start_time = time.time() start_time = time.time()
for model_output in self.model.vc(**model_input, stream=stream, speed=speed): for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
@@ -170,8 +143,6 @@ class CosyVoice:
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output yield model_output
start_time = time.time() start_time = time.time()
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)
class CosyVoice2(CosyVoice): class CosyVoice2(CosyVoice):
@@ -215,17 +186,11 @@ class CosyVoice2(CosyVoice):
self.fp16, self.estimator_count) self.fp16, self.estimator_count)
del configs del configs
thread_count = 10
self.stream_pool = queue.Queue(maxsize=thread_count)
for _ in range(thread_count):
self.stream_pool.put(torch.cuda.Stream(self.device))
def inference_instruct(self, *args, **kwargs): def inference_instruct(self, *args, **kwargs):
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!') raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True): def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!' assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)): for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate) model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
@@ -236,13 +201,8 @@ class CosyVoice2(CosyVoice):
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output yield model_output
start_time = time.time() start_time = time.time()
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)
def inference_instruct2_by_spk_id(self, tts_text, instruct_text, spk_id, stream=False, speed=1.0, text_frontend=True): def inference_instruct2_by_spk_id(self, tts_text, instruct_text, spk_id, stream=False, speed=1.0, text_frontend=True):
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)): for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_instruct2_by_spk_id(i, instruct_text, spk_id) model_input = self.frontend.frontend_instruct2_by_spk_id(i, instruct_text, spk_id)
start_time = time.time() start_time = time.time()
@@ -252,5 +212,3 @@ class CosyVoice2(CosyVoice):
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output yield model_output
start_time = time.time() start_time = time.time()
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)

View File

@@ -23,6 +23,7 @@ import uuid
from cosyvoice.utils.common import fade_in_out from cosyvoice.utils.common import fade_in_out
from cosyvoice.utils.file_utils import convert_onnx_to_trt from cosyvoice.utils.file_utils import convert_onnx_to_trt
from cosyvoice.flow.flow_matching import EstimatorWrapper from cosyvoice.flow.flow_matching import EstimatorWrapper
import queue
class CosyVoiceModel: class CosyVoiceModel:
@@ -66,6 +67,12 @@ class CosyVoiceModel:
self.flow_cache_dict = {} self.flow_cache_dict = {}
self.hift_cache_dict = {} self.hift_cache_dict = {}
self.stream_context_pool = queue.Queue()
for _ in range(10):
self.stream_context_pool.put(torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext())
self.is_cuda_available = torch.cuda.is_available()
def load(self, llm_model, flow_model, hift_model): def load(self, llm_model, flow_model, hift_model):
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True) self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
self.llm.to(self.device).eval() self.llm.to(self.device).eval()
@@ -166,6 +173,10 @@ class CosyVoiceModel:
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs): prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
# this_uuid is used to track variables related to this inference thread # this_uuid is used to track variables related to this inference thread
stream_context = self.stream_context_pool.get()
with stream_context:
this_uuid = str(uuid.uuid1()) this_uuid = str(uuid.uuid1())
with self.lock: with self.lock:
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
@@ -222,6 +233,9 @@ class CosyVoiceModel:
self.mel_overlap_dict.pop(this_uuid) self.mel_overlap_dict.pop(this_uuid)
self.hift_cache_dict.pop(this_uuid) self.hift_cache_dict.pop(this_uuid)
self.flow_cache_dict.pop(this_uuid) self.flow_cache_dict.pop(this_uuid)
self.synchronize_stream()
self.stream_context_pool.put(stream_context)
torch.cuda.empty_cache() torch.cuda.empty_cache()
def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs): def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
@@ -278,6 +292,10 @@ class CosyVoiceModel:
self.hift_cache_dict.pop(this_uuid) self.hift_cache_dict.pop(this_uuid)
torch.cuda.empty_cache() torch.cuda.empty_cache()
def synchronize_stream(self):
if self.is_cuda_available:
torch.cuda.current_stream().synchronize()
class CosyVoice2Model(CosyVoiceModel): class CosyVoice2Model(CosyVoiceModel):
@@ -314,6 +332,12 @@ class CosyVoice2Model(CosyVoiceModel):
self.llm_end_dict = {} self.llm_end_dict = {}
self.hift_cache_dict = {} self.hift_cache_dict = {}
self.stream_context_pool = queue.Queue()
for _ in range(10):
self.stream_context_pool.put(torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext())
self.is_cuda_available = torch.cuda.is_available()
def load_jit(self, flow_encoder_model): def load_jit(self, flow_encoder_model):
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device) flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
self.flow.encoder = flow_encoder self.flow.encoder = flow_encoder
@@ -359,6 +383,10 @@ class CosyVoice2Model(CosyVoiceModel):
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs): prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
# this_uuid is used to track variables related to this inference thread # this_uuid is used to track variables related to this inference thread
self.synchronize_stream()
stream_context = self.stream_context_pool.get()
with torch.cuda.stream(stream_context):
this_uuid = str(uuid.uuid1()) this_uuid = str(uuid.uuid1())
with self.lock: with self.lock:
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
@@ -409,6 +437,9 @@ class CosyVoice2Model(CosyVoiceModel):
with self.lock: with self.lock:
self.tts_speech_token_dict.pop(this_uuid) self.tts_speech_token_dict.pop(this_uuid)
self.llm_end_dict.pop(this_uuid) self.llm_end_dict.pop(this_uuid)
self.synchronize_stream()
self.stream_context_pool.put(stream_context)
torch.cuda.empty_cache() torch.cuda.empty_cache()