Refactor CosyVoice inference methods to streamline CUDA stream management

- Removed the queue-based stream pool and integrated direct CUDA stream usage for improved performance.
- Simplified inference methods by eliminating unnecessary synchronization and stream management code.
- Enhanced logging for better tracking of synthesis operations and performance metrics.
- Updated the model class to support CUDA stream context management, ensuring efficient resource utilization during inference.
This commit is contained in:
禾息
2025-04-16 14:15:14 +08:00
parent fd9b7d45e2
commit 7f4c9a2c64
2 changed files with 226 additions and 237 deletions

View File

@@ -22,7 +22,7 @@ from cosyvoice.cli.frontend import CosyVoiceFrontEnd
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model, VllmCosyVoice2Model
from cosyvoice.utils.file_utils import logging
from cosyvoice.utils.class_utils import get_model_type
import queue
class CosyVoice:
@@ -60,11 +60,6 @@ class CosyVoice:
self.fp16, self.estimator_count)
del configs
thread_count = 10
self.stream_pool = queue.Queue(maxsize=thread_count)
for _ in range(thread_count):
self.stream_pool.put(torch.cuda.Stream(self.device))
def list_available_spks(self):
spks = list(self.frontend.spk2info.keys())
@@ -74,104 +69,80 @@ class CosyVoice:
self.frontend.add_spk_info(spk_id, spk_info)
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_sft(i, spk_id)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)
def inference_zero_shot_by_spk_id(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
"""使用预定义的说话人执行 zero_shot 推理"""
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_zero_shot_by_spk_id(i, spk_id)
start_time = time.time()
last_time = start_time
chunk_index = 0
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech index:{}, len {:.2f}, rtf {:.3f}, cost {:.3f}s, all cost time {:.3f}s'.format(
chunk_index, speech_len, (time.time()-last_time)/speech_len, time.time()-last_time, time.time()-start_time))
yield model_output
last_time = time.time()
chunk_index += 1
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
if self.instruct is False:
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_sft(i, spk_id)
start_time = time.time()
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
def inference_zero_shot_by_spk_id(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
"""使用预定义的说话人执行 zero_shot 推理"""
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_zero_shot_by_spk_id(i, spk_id)
start_time = time.time()
last_time = start_time
chunk_index = 0
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech index:{}, len {:.2f}, rtf {:.3f}, cost {:.3f}s, all cost time {:.3f}s'.format(
chunk_index, speech_len, (time.time()-last_time)/speech_len, time.time()-last_time, time.time()-start_time))
yield model_output
last_time = time.time()
chunk_index += 1
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
if self.instruct is False:
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
start_time = time.time()
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
class CosyVoice2(CosyVoice):
@@ -215,42 +186,29 @@ class CosyVoice2(CosyVoice):
self.fp16, self.estimator_count)
del configs
thread_count = 10
self.stream_pool = queue.Queue(maxsize=thread_count)
for _ in range(thread_count):
self.stream_pool.put(torch.cuda.Stream(self.device))
def inference_instruct(self, *args, **kwargs):
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)
def inference_instruct2_by_spk_id(self, tts_text, instruct_text, spk_id, stream=False, speed=1.0, text_frontend=True):
cuda_stream = self.stream_pool.get()
with torch.cuda.stream(cuda_stream):
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_instruct2_by_spk_id(i, instruct_text, spk_id)
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_instruct2_by_spk_id(i, instruct_text, spk_id)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
cuda_stream.synchronize()
self.stream_pool.put(cuda_stream)