add threading

This commit is contained in:
MiXaiLL76
2024-09-05 14:32:37 +03:00
parent bcda6d807c
commit 7b3e285bca

View File

@@ -18,53 +18,117 @@ import torchaudio
from tqdm import tqdm
import onnxruntime
import torchaudio.compliance.kaldi as kaldi
from queue import Queue, Empty
from threading import Thread
class ExtractEmbedding:
def __init__(self, model_path: str, queue: Queue, out_queue: Queue):
self.model_path = model_path
self.queue = queue
self.out_queue = out_queue
self.is_run = True
def run(self):
self.consumer_thread = Thread(target=self.consumer)
self.consumer_thread.start()
def stop(self):
self.is_run = False
self.consumer_thread.join()
def consumer(self):
option = onnxruntime.SessionOptions()
option.graph_optimization_level = (
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
)
option.intra_op_num_threads = 1
providers = ["CPUExecutionProvider"]
ort_session = onnxruntime.InferenceSession(
self.model_path, sess_options=option, providers=providers
)
while self.is_run:
try:
utt, wav_file = self.queue.get(timeout=1)
audio, sample_rate = torchaudio.load(wav_file)
if sample_rate != 16000:
audio = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=16000
)(audio)
feat = kaldi.fbank(
audio, num_mel_bins=80, dither=0, sample_frequency=16000
)
feat = feat - feat.mean(dim=0, keepdim=True)
embedding = (
ort_session.run(
None,
{
ort_session.get_inputs()[0]
.name: feat.unsqueeze(dim=0)
.cpu()
.numpy()
},
)[0]
.flatten()
.tolist()
)
self.out_queue.put((utt, embedding))
except Empty:
self.is_run = False
break
def main(args):
utt2wav, utt2spk = {}, {}
with open('{}/wav.scp'.format(args.dir)) as f:
with open("{}/wav.scp".format(args.dir)) as f:
for l in f:
l = l.replace('\n', '').split()
l = l.replace("\n", "").split()
utt2wav[l[0]] = l[1]
with open('{}/utt2spk'.format(args.dir)) as f:
with open("{}/utt2spk".format(args.dir)) as f:
for l in f:
l = l.replace('\n', '').split()
l = l.replace("\n", "").split()
utt2spk[l[0]] = l[1]
option = onnxruntime.SessionOptions()
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
option.intra_op_num_threads = 1
providers = ["CPUExecutionProvider"]
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
input_queue = Queue()
output_queue = Queue()
consumers = [
ExtractEmbedding(args.onnx_path, input_queue, output_queue)
for _ in range(args.num_thread)
]
utt2embedding, spk2embedding = {}, {}
for utt in tqdm(utt2wav.keys()):
audio, sample_rate = torchaudio.load(utt2wav[utt])
if sample_rate != 16000:
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
feat = kaldi.fbank(audio,
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat = feat - feat.mean(dim=0, keepdim=True)
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
utt2embedding[utt] = embedding
spk = utt2spk[utt]
if spk not in spk2embedding:
spk2embedding[spk] = []
spk2embedding[spk].append(embedding)
for utt in tqdm(utt2wav.keys(), desc="Load data"):
input_queue.put((utt, utt2wav[utt]))
for c in consumers:
c.run()
with tqdm(desc="Process data: ", total=len(utt2wav)) as pbar:
while any([c.is_run for c in consumers]):
try:
utt, embedding = output_queue.get(timeout=1)
utt2embedding[utt] = embedding
spk = utt2spk[utt]
if spk not in spk2embedding:
spk2embedding[spk] = []
spk2embedding[spk].append(embedding)
pbar.update(1)
except Empty:
continue
for k, v in spk2embedding.items():
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
torch.save(utt2embedding, '{}/utt2embedding.pt'.format(args.dir))
torch.save(spk2embedding, '{}/spk2embedding.pt'.format(args.dir))
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--dir',
type=str)
parser.add_argument('--onnx_path',
type=str)
parser.add_argument("--dir", type=str)
parser.add_argument("--onnx_path", type=str)
parser.add_argument("--num_thread", type=int, default=8)
args = parser.parse_args()
main(args)