mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
add llm train
This commit is contained in:
@@ -11,6 +11,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import random
|
||||
from typing import Dict, Optional, Callable, List, Generator
|
||||
import torch
|
||||
from torch import nn
|
||||
@@ -21,6 +22,7 @@ from cosyvoice.utils.common import IGNORE_ID
|
||||
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
||||
from cosyvoice.utils.common import th_accuracy
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
from cosyvoice.utils.mask import make_pad_mask
|
||||
|
||||
|
||||
class TransformerLM(torch.nn.Module):
|
||||
@@ -226,6 +228,17 @@ class Qwen2Encoder(torch.nn.Module):
|
||||
super().__init__()
|
||||
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
|
||||
|
||||
def forward(self, xs: torch.Tensor, xs_lens: torch.Tensor):
|
||||
T = xs.size(1)
|
||||
masks = ~make_pad_mask(xs_lens, T)
|
||||
outs = self.model(
|
||||
inputs_embeds=xs,
|
||||
attention_mask=masks,
|
||||
output_hidden_states=True,
|
||||
return_dict=True,
|
||||
)
|
||||
return outs.hidden_states[-1], masks.unsqueeze(1)
|
||||
|
||||
def forward_one_step(self, xs, masks, cache=None):
|
||||
input_masks = masks[:, -1, :]
|
||||
outs = self.model(
|
||||
@@ -280,6 +293,58 @@ class Qwen2LM(TransformerLM):
|
||||
self.sampling = sampling
|
||||
self.mix_ratio = mix_ratio
|
||||
|
||||
def pad_unpad_sequence(self, sos_eos_emb, text_token, text_token_len, task_id_emb, speech_token, speech_token_len, bistream):
|
||||
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
||||
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
||||
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
|
||||
for i in range(len(text_token))]
|
||||
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
||||
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
||||
return lm_input, lm_input_len
|
||||
|
||||
def forward(
|
||||
self,
|
||||
batch: dict,
|
||||
device: torch.device,
|
||||
) -> Dict[str, Optional[torch.Tensor]]:
|
||||
"""
|
||||
Args:
|
||||
text: (B, L, D)
|
||||
text_lengths: (B,)
|
||||
audio: (B, T, N) or (B, T)
|
||||
audio_lengths: (B,)
|
||||
"""
|
||||
text_token = batch['text_token'].to(device)
|
||||
text_token_len = batch['text_token_len'].to(device)
|
||||
speech_token = batch['speech_token'].to(device)
|
||||
speech_token_len = batch['speech_token_len'].to(device)
|
||||
|
||||
# 1. prepare llm_target
|
||||
bistream = True if random.random() < 0.5 else False
|
||||
lm_target = [torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
||||
[self.speech_token_size]) for i in range(text_token.size(0))]
|
||||
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
||||
|
||||
# 1. encode text_token
|
||||
text_token = self.llm.model.model.embed_tokens(text_token)
|
||||
|
||||
# 3. eos and task_id
|
||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||
|
||||
# 4. encode speech_token
|
||||
speech_token = self.speech_embedding(speech_token)
|
||||
|
||||
# 5. unpad and pad
|
||||
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, text_token, text_token_len, task_id_emb, speech_token, speech_token_len, bistream)
|
||||
|
||||
# 6. run lm forward
|
||||
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
||||
logits = self.llm_decoder(lm_output)
|
||||
loss = self.criterion_ce(logits, lm_target)
|
||||
acc = th_accuracy(logits.view(-1, self.speech_token_size + 3), lm_target, ignore_label=IGNORE_ID)
|
||||
return {'loss': loss, 'acc': acc}
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(
|
||||
self,
|
||||
|
||||
Reference in New Issue
Block a user