mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 09:59:23 +08:00
add hifigan train
This commit is contained in:
@@ -26,11 +26,13 @@ class CosyVoiceModel:
|
||||
def __init__(self,
|
||||
llm: torch.nn.Module,
|
||||
flow: torch.nn.Module,
|
||||
hift: torch.nn.Module):
|
||||
hift: torch.nn.Module,
|
||||
fp16: bool):
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
self.llm = llm
|
||||
self.flow = flow
|
||||
self.hift = hift
|
||||
self.fp16 = fp16
|
||||
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
||||
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
||||
self.token_overlap_len = 20
|
||||
@@ -56,13 +58,17 @@ class CosyVoiceModel:
|
||||
def load(self, llm_model, flow_model, hift_model):
|
||||
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
||||
self.llm.to(self.device).eval()
|
||||
self.llm.half()
|
||||
if self.fp16 is True:
|
||||
self.llm.half()
|
||||
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
|
||||
self.flow.to(self.device).eval()
|
||||
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
||||
# in case hift_model is a hifigan model
|
||||
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device)}
|
||||
self.hift.load_state_dict(hift_state_dict, strict=False)
|
||||
self.hift.to(self.device).eval()
|
||||
|
||||
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
|
||||
assert self.fp16 is True, "we only provide fp16 jit model, set fp16=True if you want to use jit model"
|
||||
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
|
||||
self.llm.text_encoder = llm_text_encoder
|
||||
llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
|
||||
@@ -80,6 +86,8 @@ class CosyVoiceModel:
|
||||
self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
|
||||
|
||||
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
||||
if self.fp16 is True:
|
||||
llm_embedding = llm_embedding.half()
|
||||
with self.llm_context:
|
||||
for i in self.llm.inference(text=text.to(self.device),
|
||||
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
||||
@@ -87,7 +95,7 @@ class CosyVoiceModel:
|
||||
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=llm_embedding.to(self.device).half()):
|
||||
embedding=llm_embedding.to(self.device)):
|
||||
self.tts_speech_token_dict[uuid].append(i)
|
||||
self.llm_end_dict[uuid] = True
|
||||
|
||||
@@ -123,7 +131,7 @@ class CosyVoiceModel:
|
||||
if speed != 1.0:
|
||||
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
||||
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
||||
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
||||
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||
return tts_speech
|
||||
|
||||
Reference in New Issue
Block a user