mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
add hifigan train
This commit is contained in:
93
cosyvoice/bin/average_model.py
Normal file
93
cosyvoice/bin/average_model.py
Normal file
@@ -0,0 +1,93 @@
|
||||
# Copyright (c) 2020 Mobvoi Inc (Di Wu)
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import glob
|
||||
import sys
|
||||
|
||||
import yaml
|
||||
import torch
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description='average model')
|
||||
parser.add_argument('--dst_model', required=True, help='averaged model')
|
||||
parser.add_argument('--src_path',
|
||||
required=True,
|
||||
help='src model path for average')
|
||||
parser.add_argument('--val_best',
|
||||
action="store_true",
|
||||
help='averaged model')
|
||||
parser.add_argument('--num',
|
||||
default=5,
|
||||
type=int,
|
||||
help='nums for averaged model')
|
||||
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
val_scores = []
|
||||
if args.val_best:
|
||||
yamls = glob.glob('{}/*.yaml'.format(args.src_path))
|
||||
yamls = [
|
||||
f for f in yamls
|
||||
if not (os.path.basename(f).startswith('train')
|
||||
or os.path.basename(f).startswith('init'))
|
||||
]
|
||||
for y in yamls:
|
||||
with open(y, 'r') as f:
|
||||
dic_yaml = yaml.load(f, Loader=yaml.BaseLoader)
|
||||
loss = float(dic_yaml['loss_dict']['loss'])
|
||||
epoch = int(dic_yaml['epoch'])
|
||||
step = int(dic_yaml['step'])
|
||||
tag = dic_yaml['tag']
|
||||
val_scores += [[epoch, step, loss, tag]]
|
||||
sorted_val_scores = sorted(val_scores,
|
||||
key=lambda x: x[2],
|
||||
reverse=False)
|
||||
print("best val (epoch, step, loss, tag) = " +
|
||||
str(sorted_val_scores[:args.num]))
|
||||
path_list = [
|
||||
args.src_path + '/epoch_{}_whole.pt'.format(score[0])
|
||||
for score in sorted_val_scores[:args.num]
|
||||
]
|
||||
print(path_list)
|
||||
avg = {}
|
||||
num = args.num
|
||||
assert num == len(path_list)
|
||||
for path in path_list:
|
||||
print('Processing {}'.format(path))
|
||||
states = torch.load(path, map_location=torch.device('cpu'))
|
||||
for k in states.keys():
|
||||
if k not in avg.keys():
|
||||
avg[k] = states[k].clone()
|
||||
else:
|
||||
avg[k] += states[k]
|
||||
# average
|
||||
for k in avg.keys():
|
||||
if avg[k] is not None:
|
||||
# pytorch 1.6 use true_divide instead of /=
|
||||
avg[k] = torch.true_divide(avg[k], num)
|
||||
print('Saving to {}'.format(args.dst_model))
|
||||
torch.save(avg, args.dst_model)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user