From 7555afb90adfc21c95ca06667713ca8754efb3d1 Mon Sep 17 00:00:00 2001 From: "lyuxiang.lx" Date: Thu, 5 Sep 2024 14:09:40 +0800 Subject: [PATCH] update fastapi --- cosyvoice/cli/cosyvoice.py | 9 +- cosyvoice/hifigan/generator.py | 2 +- examples/libritts/cosyvoice/run.sh | 6 + examples/magicdata-read/cosyvoice/run.sh | 6 + runtime/python/fastapi/client.py | 92 +++++++------ runtime/python/fastapi/server.py | 164 +++++++++-------------- 6 files changed, 131 insertions(+), 148 deletions(-) diff --git a/cosyvoice/cli/cosyvoice.py b/cosyvoice/cli/cosyvoice.py index eab5cad..5e1ea9c 100644 --- a/cosyvoice/cli/cosyvoice.py +++ b/cosyvoice/cli/cosyvoice.py @@ -13,6 +13,7 @@ # limitations under the License. import os import time +from tqdm import tqdm from hyperpyyaml import load_hyperpyyaml from modelscope import snapshot_download from cosyvoice.cli.frontend import CosyVoiceFrontEnd @@ -52,7 +53,7 @@ class CosyVoice: return spks def inference_sft(self, tts_text, spk_id, stream=False): - for i in self.frontend.text_normalize(tts_text, split=True): + for i in tqdm(self.frontend.text_normalize(tts_text, split=True)): model_input = self.frontend.frontend_sft(i, spk_id) start_time = time.time() logging.info('synthesis text {}'.format(i)) @@ -64,7 +65,7 @@ class CosyVoice: def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False): prompt_text = self.frontend.text_normalize(prompt_text, split=False) - for i in self.frontend.text_normalize(tts_text, split=True): + for i in tqdm(self.frontend.text_normalize(tts_text, split=True)): model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k) start_time = time.time() logging.info('synthesis text {}'.format(i)) @@ -77,7 +78,7 @@ class CosyVoice: def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False): if self.frontend.instruct is True: raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir)) - for i in self.frontend.text_normalize(tts_text, split=True): + for i in tqdm(self.frontend.text_normalize(tts_text, split=True)): model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k) start_time = time.time() logging.info('synthesis text {}'.format(i)) @@ -91,7 +92,7 @@ class CosyVoice: if self.frontend.instruct is False: raise ValueError('{} do not support instruct inference'.format(self.model_dir)) instruct_text = self.frontend.text_normalize(instruct_text, split=False) - for i in self.frontend.text_normalize(tts_text, split=True): + for i in tqdm(self.frontend.text_normalize(tts_text, split=True)): model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text) start_time = time.time() logging.info('synthesis text {}'.format(i)) diff --git a/cosyvoice/hifigan/generator.py b/cosyvoice/hifigan/generator.py index fd61834..b640219 100644 --- a/cosyvoice/hifigan/generator.py +++ b/cosyvoice/hifigan/generator.py @@ -340,7 +340,7 @@ class HiFTGenerator(nn.Module): s = self._f02source(f0) # use cache_source to avoid glitch - if cache_source.shape[2] == 0: + if cache_source.shape[2] != 0: s[:, :, :cache_source.shape[2]] = cache_source s_stft_real, s_stft_imag = self._stft(s.squeeze(1)) diff --git a/examples/libritts/cosyvoice/run.sh b/examples/libritts/cosyvoice/run.sh index 96eca9b..386e9e4 100644 --- a/examples/libritts/cosyvoice/run.sh +++ b/examples/libritts/cosyvoice/run.sh @@ -102,4 +102,10 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then --deepspeed_config ./conf/ds_stage2.json \ --deepspeed.save_states model+optimizer done +fi + +if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then + echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir" + python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir + python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir fi \ No newline at end of file diff --git a/examples/magicdata-read/cosyvoice/run.sh b/examples/magicdata-read/cosyvoice/run.sh index 0cf6f6d..0a080ac 100644 --- a/examples/magicdata-read/cosyvoice/run.sh +++ b/examples/magicdata-read/cosyvoice/run.sh @@ -102,4 +102,10 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then --deepspeed_config ./conf/ds_stage2.json \ --deepspeed.save_states model+optimizer done +fi + +if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then + echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir" + python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir + python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir fi \ No newline at end of file diff --git a/runtime/python/fastapi/client.py b/runtime/python/fastapi/client.py index cf32092..981c7c1 100644 --- a/runtime/python/fastapi/client.py +++ b/runtime/python/fastapi/client.py @@ -1,56 +1,68 @@ +# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. import argparse import logging import requests +import torch +import torchaudio +import numpy as np -def saveResponse(path, response): - # 以二进制写入模式打开文件 - with open(path, 'wb') as file: - # 将响应的二进制内容写入文件 - file.write(response.content) def main(): - api = args.api_base + url = "http://{}:{}/inference_{}".format(args.host, args.port, args.mode) if args.mode == 'sft': - url = api + "/api/inference/sft" - payload={ - 'tts': args.tts_text, - 'role': args.spk_id - } - response = requests.request("POST", url, data=payload) - saveResponse(args.tts_wav, response) - elif args.mode == 'zero_shot': - url = api + "/api/inference/zero-shot" - payload={ - 'tts': args.tts_text, - 'prompt': args.prompt_text - } - files=[('audio', ('prompt_audio.wav', open(args.prompt_wav,'rb'), 'application/octet-stream'))] - response = requests.request("POST", url, data=payload, files=files) - saveResponse(args.tts_wav, response) - elif args.mode == 'cross_lingual': - url = api + "/api/inference/cross-lingual" - payload={ - 'tts': args.tts_text, - } - files=[('audio', ('prompt_audio.wav', open(args.prompt_wav,'rb'), 'application/octet-stream'))] - response = requests.request("POST", url, data=payload, files=files) - saveResponse(args.tts_wav, response) - else: - url = api + "/api/inference/instruct" payload = { - 'tts': args.tts_text, - 'role': args.spk_id, - 'instruct': args.instruct_text + 'tts_text': args.tts_text, + 'spk_id': args.spk_id } - response = requests.request("POST", url, data=payload) - saveResponse(args.tts_wav, response) - logging.info("Response save to {}", args.tts_wav) + response = requests.request("GET", url, data=payload, stream=True) + elif args.mode == 'zero_shot': + payload = { + 'tts_text': args.tts_text, + 'prompt_text': args.prompt_text + } + files = [('prompt_wav', ('prompt_wav', open(args.prompt_wav, 'rb'), 'application/octet-stream'))] + response = requests.request("GET", url, data=payload, files=files, stream=True) + elif args.mode == 'cross_lingual': + payload = { + 'tts_text': args.tts_text, + } + files = [('prompt_wav', ('prompt_wav', open(args.prompt_wav,'rb'), 'application/octet-stream'))] + response = requests.request("GET", url, data=payload, files=files, stream=True) + else: + payload = { + 'tts_text': args.tts_text, + 'spk_id': args.spk_id, + 'instruct_text': args.instruct_text + } + response = requests.request("GET", url, data=payload, stream=True) + tts_audio = b'' + for r in response.iter_content(chunk_size=16000): + tts_audio += r + tts_speech = torch.from_numpy(np.array(np.frombuffer(tts_audio, dtype=np.int16))).unsqueeze(dim=0) + logging.info('save response to {}'.format(args.tts_wav)) + torchaudio.save(args.tts_wav, tts_speech, target_sr) + logging.info('get response') if __name__ == "__main__": parser = argparse.ArgumentParser() - parser.add_argument('--api_base', + parser.add_argument('--host', type=str, - default='http://127.0.0.1:6006') + default='0.0.0.0') + parser.add_argument('--port', + type=int, + default='50000') parser.add_argument('--mode', default='sft', choices=['sft', 'zero_shot', 'cross_lingual', 'instruct'], diff --git a/runtime/python/fastapi/server.py b/runtime/python/fastapi/server.py index b670665..c540b47 100644 --- a/runtime/python/fastapi/server.py +++ b/runtime/python/fastapi/server.py @@ -1,119 +1,77 @@ -# Set inference model -# export MODEL_DIR=pretrained_models/CosyVoice-300M-Instruct -# For development -# fastapi dev --port 6006 fastapi_server.py -# For production deployment -# fastapi run --port 6006 fastapi_server.py - +# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. import os import sys -import io,time -from fastapi import FastAPI, Response, File, UploadFile, Form -from fastapi.responses import HTMLResponse -from fastapi.middleware.cors import CORSMiddleware #引入 CORS中间件模块 -from contextlib import asynccontextmanager ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append('{}/../../..'.format(ROOT_DIR)) sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR)) -from cosyvoice.cli.cosyvoice import CosyVoice -from cosyvoice.utils.file_utils import load_wav -import numpy as np -import torch -import torchaudio +import argparse import logging logging.getLogger('matplotlib').setLevel(logging.WARNING) +from fastapi import FastAPI, UploadFile, Form, File +from fastapi.responses import StreamingResponse +from fastapi.middleware.cors import CORSMiddleware +import uvicorn +import numpy as np +from cosyvoice.cli.cosyvoice import CosyVoice +from cosyvoice.utils.file_utils import load_wav -class LaunchFailed(Exception): - pass - -@asynccontextmanager -async def lifespan(app: FastAPI): - model_dir = os.getenv("MODEL_DIR", "pretrained_models/CosyVoice-300M-SFT") - if model_dir: - logging.info("MODEL_DIR is {}", model_dir) - app.cosyvoice = CosyVoice(model_dir) - # sft usage - logging.info("Avaliable speakers {}", app.cosyvoice.list_avaliable_spks()) - else: - raise LaunchFailed("MODEL_DIR environment must set") - yield - -app = FastAPI(lifespan=lifespan) - -#设置允许访问的域名 -origins = ["*"] #"*",即为所有,也可以改为允许的特定ip。 +app = FastAPI() +# set cross region allowance app.add_middleware( - CORSMiddleware, - allow_origins=origins, #设置允许的origins来源 + CORSMiddleware, + allow_origins=["*"], allow_credentials=True, - allow_methods=["*"], # 设置允许跨域的http方法,比如 get、post、put等。 - allow_headers=["*"]) #允许跨域的headers,可以用来鉴别来源等作用。 + allow_methods=["*"], + allow_headers=["*"]) -def buildResponse(output): - buffer = io.BytesIO() - torchaudio.save(buffer, output, 22050, format="wav") - buffer.seek(0) - return Response(content=buffer.read(-1), media_type="audio/wav") +def generate_data(model_output): + for i in model_output: + tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes() + yield tts_audio -@app.post("/api/inference/sft") -@app.get("/api/inference/sft") -async def sft(tts: str = Form(), role: str = Form()): - start = time.process_time() - output = app.cosyvoice.inference_sft(tts, role) - end = time.process_time() - logging.info("infer time is {} seconds", end-start) - return buildResponse(output['tts_speech']) +@app.get("/inference_sft") +async def inference_sft(tts_text: str = Form(), spk_id: str = Form()): + model_output = cosyvoice.inference_sft(tts_text, spk_id) + return StreamingResponse(generate_data(model_output)) -@app.post("/api/inference/zero-shot") -async def zeroShot(tts: str = Form(), prompt: str = Form(), audio: UploadFile = File()): - start = time.process_time() - prompt_speech = load_wav(audio.file, 16000) - prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes() - prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0) - prompt_speech_16k = prompt_speech_16k.float() / (2**15) +@app.get("/inference_zero_shot") +async def inference_zero_shot(tts_text: str = Form(), prompt_text: str = Form(), prompt_wav: UploadFile = File()): + prompt_speech_16k = load_wav(prompt_wav.file, 16000) + model_output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k) + return StreamingResponse(generate_data(model_output)) - output = app.cosyvoice.inference_zero_shot(tts, prompt, prompt_speech_16k) - end = time.process_time() - logging.info("infer time is {} seconds", end-start) - return buildResponse(output['tts_speech']) +@app.get("/inference_cross_lingual") +async def inference_cross_lingual(tts_text: str = Form(), prompt_wav: UploadFile = File()): + prompt_speech_16k = load_wav(prompt_wav.file, 16000) + model_output = cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k) + return StreamingResponse(generate_data(model_output)) -@app.post("/api/inference/cross-lingual") -async def crossLingual(tts: str = Form(), audio: UploadFile = File()): - start = time.process_time() - prompt_speech = load_wav(audio.file, 16000) - prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes() - prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0) - prompt_speech_16k = prompt_speech_16k.float() / (2**15) +@app.get("/inference_instruct") +async def inference_instruct(tts_text: str = Form(), spk_id: str = Form(), instruct_text: str = Form()): + model_output = cosyvoice.inference_instruct(tts_text, spk_id, instruct_text) + return StreamingResponse(generate_data(model_output)) - output = app.cosyvoice.inference_cross_lingual(tts, prompt_speech_16k) - end = time.process_time() - logging.info("infer time is {} seconds", end-start) - return buildResponse(output['tts_speech']) - -@app.post("/api/inference/instruct") -@app.get("/api/inference/instruct") -async def instruct(tts: str = Form(), role: str = Form(), instruct: str = Form()): - start = time.process_time() - output = app.cosyvoice.inference_instruct(tts, role, instruct) - end = time.process_time() - logging.info("infer time is {} seconds", end-start) - return buildResponse(output['tts_speech']) - -@app.get("/api/roles") -async def roles(): - return {"roles": app.cosyvoice.list_avaliable_spks()} - -@app.get("/", response_class=HTMLResponse) -async def root(): - return """ - - - - - Api information - - - Get the supported tones from the Roles API first, then enter the tones and textual content in the TTS API for synthesis. Documents of API - - - """ +if __name__=='__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--port', + type=int, + default=50000) + parser.add_argument('--model_dir', + type=str, + default='iic/CosyVoice-300M', + help='local path or modelscope repo id') + args = parser.parse_args() + cosyvoice = CosyVoice(args.model_dir) + uvicorn.run(app, host="127.0.0.1", port=args.port) \ No newline at end of file