support streaming tts

This commit is contained in:
root
2025-09-02 18:32:12 +08:00
parent b7ec6c4678
commit 73d261dd48
4 changed files with 199 additions and 62 deletions

View File

@@ -114,6 +114,7 @@ class TritonPythonModel:
"runtime_top_p": np.array([[0.95]], dtype=np.float32),
"runtime_top_k": np.array([[50]], dtype=np.int32),
"temperature": np.array([[0.8]], dtype=np.float32),
"repetition_penalty": np.array([[1.1]], dtype=np.float32),
"input_ids": input_ids,
"input_lengths": np.array([[input_ids.shape[1]]], dtype=np.int32),
}
@@ -144,6 +145,7 @@ class TritonPythonModel:
# Get actual output IDs up to the sequence length
actual_output_ids = output_ids[0][0][:seq_lens[0][0]]
print(f"actual_output_ids: {actual_output_ids}")
yield actual_output_ids
else:
@@ -193,7 +195,10 @@ class TritonPythonModel:
prompt_speech_tokens: torch.Tensor,
prompt_speech_feat: torch.Tensor,
prompt_spk_embedding: torch.Tensor,
target_speech_tokens: torch.Tensor) -> torch.Tensor:
target_speech_tokens: torch.Tensor,
request_id: str,
token_offset: int = None,
finalize: bool = None) -> torch.Tensor:
"""Forward pass through the vocoder component.
Args:
@@ -210,11 +215,22 @@ class TritonPythonModel:
prompt_spk_embedding_tensor = pb_utils.Tensor.from_dlpack("prompt_spk_embedding", to_dlpack(prompt_spk_embedding))
target_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("target_speech_tokens", to_dlpack(target_speech_tokens))
inputs_tensor = [prompt_speech_tokens_tensor, prompt_speech_feat_tensor, prompt_spk_embedding_tensor, target_speech_tokens_tensor]
if token_offset is not None:
assert finalize is not None
token_offset_tensor = pb_utils.Tensor("token_offset", np.array([[token_offset]], dtype=np.int32))
finalize_tensor = pb_utils.Tensor("finalize", np.array([[finalize]], dtype=np.bool_))
inputs_tensor.append(token_offset_tensor)
inputs_tensor.append(finalize_tensor)
# Create and execute inference request
inference_request = pb_utils.InferenceRequest(
model_name='token2wav',
requested_output_names=['waveform'],
inputs=[prompt_speech_tokens_tensor, prompt_speech_feat_tensor, prompt_spk_embedding_tensor, target_speech_tokens_tensor]
inputs=inputs_tensor,
request_id=request_id,
)
inference_response = inference_request.exec()
@@ -275,6 +291,7 @@ class TritonPythonModel:
responses = []
for request in requests:
request_id = request.request_id()
# Extract input tensors
wav = pb_utils.get_input_tensor_by_name(request, "reference_wav")
wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
@@ -292,6 +309,11 @@ class TritonPythonModel:
prompt_speech_feat = speech_feat[:, :2 * token_len].contiguous().half()
prompt_speech_tokens = prompt_speech_tokens[:, :token_len].contiguous()
flow_prompt_speech_token_len = prompt_speech_tokens.shape[-1]
token_hop_len = 25
flow_pre_lookahead_len = 3
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
reference_text = reference_text[0][0].decode('utf-8')
@@ -308,24 +330,46 @@ class TritonPythonModel:
# Generate semantic tokens with LLM
generated_ids_iter = self.forward_llm(input_ids)
prompt_spk_embedding = self._extract_spk_embedding(wav_tensor)
print(f"here2")
if self.decoupled:
response_sender = request.get_response_sender()
request_id = request.request_id()
generated_ids = []
for generated_id in generated_ids_iter:
# convert the numpy array into a int32 tensor
generated_id = generated_id.tolist()
if len(generated_id) > 0:
assert len(generated_id) == 1, "Generated ID is not a single integer"
generated_ids.append(generated_id[0])
generated_ids = torch.tensor(generated_ids).unsqueeze(0).to(torch.int32).to(self.device)
prompt_spk_embedding = self._extract_spk_embedding(wav_tensor)
audio = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, generated_ids)
# Prepare response
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio))
semantic_token_ids_arr, token_offset = [], 0
for generated_ids in generated_ids_iter:
generated_ids = generated_ids.tolist()
print(f"generated_id: {generated_ids}")
semantic_token_ids_arr.extend(generated_ids)
prompt_token_pad = int(np.ceil(flow_prompt_speech_token_len / token_hop_len) * token_hop_len - flow_prompt_speech_token_len)
this_token_hop_len = token_hop_len + prompt_token_pad if token_offset == 0 else token_hop_len
print(f"this_token_hop_len: {this_token_hop_len}")
if len(semantic_token_ids_arr) - token_offset >= this_token_hop_len + flow_pre_lookahead_len:
this_tts_speech_token = semantic_token_ids_arr[:token_offset + this_token_hop_len + flow_pre_lookahead_len]
print(f"this_tts_speech_token: {this_tts_speech_token}")
this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
print(f"here3")
sub_tts_speech = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, this_tts_speech_token, request_id, token_offset, False)
print(f"here4")
# Prepare response to send
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
response_sender.send(inference_response)
self.logger.log_info(f"[{request_id}]")
token_offset += this_token_hop_len
print(f"here")
this_tts_speech_token = torch.tensor(semantic_token_ids_arr).unsqueeze(dim=0).to(torch.int32).to(self.device)
sub_tts_speech = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, this_tts_speech_token, request_id, token_offset, True)
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
response_sender.send(inference_response)
response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
self.logger.log_info("send tritonserver_response_complete_final to end")
else:
@@ -334,8 +378,7 @@ class TritonPythonModel:
if generated_ids is None or len(generated_ids) == 0:
raise pb_utils.TritonModelException("Generated IDs is None or empty")
prompt_spk_embedding = self._extract_spk_embedding(wav_tensor)
audio = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, generated_ids)
audio = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, generated_ids, request_id)
# Prepare response
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio))