mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
Implementing concurrent.futures
This commit is contained in:
@@ -13,71 +13,40 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import os
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
import onnxruntime
|
||||
import torch
|
||||
import torchaudio
|
||||
from tqdm import tqdm
|
||||
import onnxruntime
|
||||
import torchaudio.compliance.kaldi as kaldi
|
||||
from queue import Queue, Empty
|
||||
from threading import Thread
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class ExtractEmbedding:
|
||||
def __init__(self, model_path: str, queue: Queue, out_queue: Queue):
|
||||
self.model_path = model_path
|
||||
self.queue = queue
|
||||
self.out_queue = out_queue
|
||||
self.is_run = True
|
||||
def extract_embedding(input_list):
|
||||
utt, wav_file, ort_session = input_list
|
||||
|
||||
def run(self):
|
||||
self.consumer_thread = Thread(target=self.consumer)
|
||||
self.consumer_thread.start()
|
||||
|
||||
def stop(self):
|
||||
self.is_run = False
|
||||
self.consumer_thread.join()
|
||||
|
||||
def consumer(self):
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = (
|
||||
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
)
|
||||
option.intra_op_num_threads = 1
|
||||
providers = ["CPUExecutionProvider"]
|
||||
ort_session = onnxruntime.InferenceSession(
|
||||
self.model_path, sess_options=option, providers=providers
|
||||
)
|
||||
|
||||
while self.is_run:
|
||||
try:
|
||||
utt, wav_file = self.queue.get(timeout=1)
|
||||
|
||||
audio, sample_rate = torchaudio.load(wav_file)
|
||||
if sample_rate != 16000:
|
||||
audio = torchaudio.transforms.Resample(
|
||||
orig_freq=sample_rate, new_freq=16000
|
||||
)(audio)
|
||||
feat = kaldi.fbank(
|
||||
audio, num_mel_bins=80, dither=0, sample_frequency=16000
|
||||
)
|
||||
feat = feat - feat.mean(dim=0, keepdim=True)
|
||||
embedding = (
|
||||
ort_session.run(
|
||||
None,
|
||||
{
|
||||
ort_session.get_inputs()[0]
|
||||
.name: feat.unsqueeze(dim=0)
|
||||
.cpu()
|
||||
.numpy()
|
||||
},
|
||||
)[0]
|
||||
.flatten()
|
||||
.tolist()
|
||||
)
|
||||
self.out_queue.put((utt, embedding))
|
||||
except Empty:
|
||||
self.is_run = False
|
||||
break
|
||||
audio, sample_rate = torchaudio.load(wav_file)
|
||||
if sample_rate != 16000:
|
||||
audio = torchaudio.transforms.Resample(
|
||||
orig_freq=sample_rate, new_freq=16000
|
||||
)(audio)
|
||||
feat = kaldi.fbank(audio, num_mel_bins=80, dither=0, sample_frequency=16000)
|
||||
feat = feat - feat.mean(dim=0, keepdim=True)
|
||||
embedding = (
|
||||
ort_session.run(
|
||||
None,
|
||||
{
|
||||
ort_session.get_inputs()[0]
|
||||
.name: feat.unsqueeze(dim=0)
|
||||
.cpu()
|
||||
.numpy()
|
||||
},
|
||||
)[0]
|
||||
.flatten()
|
||||
.tolist()
|
||||
)
|
||||
return (utt, embedding)
|
||||
|
||||
|
||||
def main(args):
|
||||
@@ -91,32 +60,38 @@ def main(args):
|
||||
l = l.replace("\n", "").split()
|
||||
utt2spk[l[0]] = l[1]
|
||||
|
||||
input_queue = Queue()
|
||||
output_queue = Queue()
|
||||
consumers = [
|
||||
ExtractEmbedding(args.onnx_path, input_queue, output_queue)
|
||||
for _ in range(args.num_thread)
|
||||
assert os.path.exists(args.onnx_path), "onnx_path not exists"
|
||||
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = (
|
||||
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
)
|
||||
option.intra_op_num_threads = 1
|
||||
providers = ["CPUExecutionProvider"]
|
||||
ort_session = onnxruntime.InferenceSession(
|
||||
args.onnx_path, sess_options=option, providers=providers
|
||||
)
|
||||
|
||||
inputs = [
|
||||
(utt, utt2wav[utt], ort_session)
|
||||
for utt in tqdm(utt2wav.keys(), desc="Load data")
|
||||
]
|
||||
with ThreadPoolExecutor(max_workers=args.num_thread) as executor:
|
||||
results = list(
|
||||
tqdm(
|
||||
executor.map(extract_embedding, inputs),
|
||||
total=len(inputs),
|
||||
desc="Process data: ",
|
||||
)
|
||||
)
|
||||
|
||||
utt2embedding, spk2embedding = {}, {}
|
||||
for utt in tqdm(utt2wav.keys(), desc="Load data"):
|
||||
input_queue.put((utt, utt2wav[utt]))
|
||||
|
||||
for c in consumers:
|
||||
c.run()
|
||||
|
||||
with tqdm(desc="Process data: ", total=len(utt2wav)) as pbar:
|
||||
while any([c.is_run for c in consumers]):
|
||||
try:
|
||||
utt, embedding = output_queue.get(timeout=1)
|
||||
utt2embedding[utt] = embedding
|
||||
spk = utt2spk[utt]
|
||||
if spk not in spk2embedding:
|
||||
spk2embedding[spk] = []
|
||||
spk2embedding[spk].append(embedding)
|
||||
pbar.update(1)
|
||||
except Empty:
|
||||
continue
|
||||
for utt, embedding in results:
|
||||
utt2embedding[utt] = embedding
|
||||
spk = utt2spk[utt]
|
||||
if spk not in spk2embedding:
|
||||
spk2embedding[spk] = []
|
||||
spk2embedding[spk].append(embedding)
|
||||
|
||||
for k, v in spk2embedding.items():
|
||||
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
||||
|
||||
Reference in New Issue
Block a user