mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
feat: Support DPO
This commit is contained in:
committed by
lyuxiang.lx
parent
3770c1c8b1
commit
6d876f573c
187
cosyvoice/bin/train_dpo.py
Normal file
187
cosyvoice/bin/train_dpo.py
Normal file
@@ -0,0 +1,187 @@
|
|||||||
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
import argparse
|
||||||
|
import datetime
|
||||||
|
import logging
|
||||||
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||||
|
from copy import deepcopy
|
||||||
|
import os
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
import deepspeed
|
||||||
|
|
||||||
|
from hyperpyyaml import load_hyperpyyaml
|
||||||
|
|
||||||
|
from torch.distributed.elastic.multiprocessing.errors import record
|
||||||
|
|
||||||
|
from cosyvoice.utils.executor_dpo import Executor
|
||||||
|
from cosyvoice.utils.train_utils_dpo import (
|
||||||
|
init_distributed,
|
||||||
|
init_dataset_and_dataloader,
|
||||||
|
init_optimizer_and_scheduler,
|
||||||
|
init_summarywriter, save_model,
|
||||||
|
wrap_cuda_model, check_modify_and_save_config)
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser(description='training your network')
|
||||||
|
parser.add_argument('--train_engine',
|
||||||
|
default='torch_ddp',
|
||||||
|
choices=['torch_ddp', 'deepspeed'],
|
||||||
|
help='Engine for paralleled training')
|
||||||
|
parser.add_argument('--model', required=True, help='model which will be trained')
|
||||||
|
parser.add_argument('--config', required=True, help='config file')
|
||||||
|
parser.add_argument('--train_data', required=True, help='train data file')
|
||||||
|
parser.add_argument('--cv_data', required=True, help='cv data file')
|
||||||
|
parser.add_argument('--checkpoint', help='checkpoint model')
|
||||||
|
parser.add_argument('--model_dir', required=True, help='save model dir')
|
||||||
|
parser.add_argument('--tensorboard_dir',
|
||||||
|
default='tensorboard',
|
||||||
|
help='tensorboard log dir')
|
||||||
|
parser.add_argument('--ddp.dist_backend',
|
||||||
|
dest='dist_backend',
|
||||||
|
default='nccl',
|
||||||
|
choices=['nccl', 'gloo'],
|
||||||
|
help='distributed backend')
|
||||||
|
parser.add_argument('--num_workers',
|
||||||
|
default=0,
|
||||||
|
type=int,
|
||||||
|
help='num of subprocess workers for reading')
|
||||||
|
parser.add_argument('--prefetch',
|
||||||
|
default=100,
|
||||||
|
type=int,
|
||||||
|
help='prefetch number')
|
||||||
|
parser.add_argument('--pin_memory',
|
||||||
|
action='store_true',
|
||||||
|
default=False,
|
||||||
|
help='Use pinned memory buffers used for reading')
|
||||||
|
parser.add_argument('--use_amp',
|
||||||
|
action='store_true',
|
||||||
|
default=False,
|
||||||
|
help='Use automatic mixed precision training')
|
||||||
|
parser.add_argument('--deepspeed.save_states',
|
||||||
|
dest='save_states',
|
||||||
|
default='model_only',
|
||||||
|
choices=['model_only', 'model+optimizer'],
|
||||||
|
help='save model/optimizer states')
|
||||||
|
parser.add_argument('--timeout',
|
||||||
|
default=60,
|
||||||
|
type=int,
|
||||||
|
help='timeout (in seconds) of cosyvoice_join.')
|
||||||
|
parser.add_argument('--dpo',
|
||||||
|
action='store_true',
|
||||||
|
default=False,
|
||||||
|
help='Use Direct Preference Optimization')
|
||||||
|
parser.add_argument('--beta',
|
||||||
|
default=0.01,
|
||||||
|
type=float,
|
||||||
|
help='beta of dpo training')
|
||||||
|
parser = deepspeed.add_config_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
@record
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
logging.basicConfig(level=logging.DEBUG,
|
||||||
|
format='%(asctime)s %(levelname)s %(message)s')
|
||||||
|
# gan train has some special initialization logic
|
||||||
|
gan = True if args.model == 'hifigan' else False
|
||||||
|
|
||||||
|
override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
|
||||||
|
if gan is True:
|
||||||
|
override_dict.pop('hift')
|
||||||
|
with open(args.config, 'r') as f:
|
||||||
|
configs = load_hyperpyyaml(f, overrides=override_dict)
|
||||||
|
if gan is True:
|
||||||
|
configs['train_conf'] = configs['train_conf_gan']
|
||||||
|
configs['train_conf'].update(vars(args))
|
||||||
|
|
||||||
|
# Init env for ddp
|
||||||
|
init_distributed(args)
|
||||||
|
|
||||||
|
# Get dataset & dataloader
|
||||||
|
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
|
||||||
|
init_dataset_and_dataloader(args, configs, gan)
|
||||||
|
|
||||||
|
# Do some sanity checks and save config to arsg.model_dir
|
||||||
|
configs = check_modify_and_save_config(args, configs)
|
||||||
|
|
||||||
|
# Tensorboard summary
|
||||||
|
writer = init_summarywriter(args)
|
||||||
|
|
||||||
|
# load checkpoint
|
||||||
|
model = configs[args.model]
|
||||||
|
ref_model = None
|
||||||
|
if args.dpo:
|
||||||
|
ref_model = deepcopy(model)
|
||||||
|
start_step, start_epoch = 0, -1
|
||||||
|
if args.checkpoint is not None:
|
||||||
|
if os.path.exists(args.checkpoint):
|
||||||
|
state_dict = torch.load(args.checkpoint, map_location='cpu')
|
||||||
|
model.load_state_dict(state_dict, strict=False)
|
||||||
|
if args.dpo:
|
||||||
|
ref_model.load_state_dict(state_dict, strict=False)
|
||||||
|
if 'step' in state_dict:
|
||||||
|
start_step = state_dict['step']
|
||||||
|
if 'epoch' in state_dict:
|
||||||
|
start_epoch = state_dict['epoch']
|
||||||
|
else:
|
||||||
|
logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
|
||||||
|
|
||||||
|
# Dispatch model from cpu to gpu
|
||||||
|
model = wrap_cuda_model(args, model)
|
||||||
|
if args.dpo:
|
||||||
|
ref_model = wrap_cuda_model(args, ref_model)
|
||||||
|
|
||||||
|
# Get optimizer & scheduler
|
||||||
|
model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
|
||||||
|
if args.dpo:
|
||||||
|
ref_model, _, _, _, _ = init_optimizer_and_scheduler(args, configs, ref_model, gan)
|
||||||
|
scheduler.set_step(start_step)
|
||||||
|
if scheduler_d is not None:
|
||||||
|
scheduler_d.set_step(start_step)
|
||||||
|
|
||||||
|
# Save init checkpoints
|
||||||
|
info_dict = deepcopy(configs['train_conf'])
|
||||||
|
info_dict['step'] = start_step
|
||||||
|
info_dict['epoch'] = start_epoch
|
||||||
|
save_model(model, 'init', info_dict)
|
||||||
|
|
||||||
|
# Get executor
|
||||||
|
executor = Executor(gan=gan, dpo=args.dpo, beta=args.beta)
|
||||||
|
executor.step = start_step
|
||||||
|
|
||||||
|
# Init scaler, used for pytorch amp mixed precision training
|
||||||
|
scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
|
||||||
|
print('start step {} start epoch {}'.format(start_step, start_epoch))
|
||||||
|
# Start training loop
|
||||||
|
for epoch in range(start_epoch + 1, info_dict['max_epoch']):
|
||||||
|
executor.epoch = epoch
|
||||||
|
train_dataset.set_epoch(epoch)
|
||||||
|
dist.barrier()
|
||||||
|
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
|
||||||
|
if gan is True:
|
||||||
|
executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
||||||
|
writer, info_dict, scaler, group_join)
|
||||||
|
else:
|
||||||
|
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model)
|
||||||
|
dist.destroy_process_group(group_join)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
443
cosyvoice/dataset/processor_dpo.py
Normal file
443
cosyvoice/dataset/processor_dpo.py
Normal file
@@ -0,0 +1,443 @@
|
|||||||
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
import logging
|
||||||
|
import random
|
||||||
|
|
||||||
|
import pyarrow.parquet as pq
|
||||||
|
from io import BytesIO
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import pyworld as pw
|
||||||
|
|
||||||
|
|
||||||
|
AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
|
||||||
|
|
||||||
|
|
||||||
|
def parquet_opener(data, mode='train', tts_data={}):
|
||||||
|
""" Give url or local file, return file descriptor
|
||||||
|
Inplace operation.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data(Iterable[str]): url or local file list
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{src, stream}]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
assert 'src' in sample
|
||||||
|
url = sample['src']
|
||||||
|
try:
|
||||||
|
for df in pq.ParquetFile(url).iter_batches(batch_size=64):
|
||||||
|
df = df.to_pandas()
|
||||||
|
for i in range(len(df)):
|
||||||
|
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
|
||||||
|
continue
|
||||||
|
sample.update(dict(df.loc[i]))
|
||||||
|
if mode == 'train':
|
||||||
|
# NOTE do not return sample directly, must initialize a new dict
|
||||||
|
yield {**sample}
|
||||||
|
else:
|
||||||
|
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
||||||
|
yield {**sample, 'tts_index': index, 'tts_text': text}
|
||||||
|
except Exception as ex:
|
||||||
|
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
||||||
|
|
||||||
|
|
||||||
|
def filter(data,
|
||||||
|
max_length=10240,
|
||||||
|
min_length=10,
|
||||||
|
token_max_length=200,
|
||||||
|
token_min_length=1,
|
||||||
|
min_output_input_ratio=0.0005,
|
||||||
|
max_output_input_ratio=1,
|
||||||
|
mode='train'):
|
||||||
|
""" Filter sample according to feature and label length
|
||||||
|
Inplace operation.
|
||||||
|
|
||||||
|
Args::
|
||||||
|
data: Iterable[{key, wav, label, sample_rate}]
|
||||||
|
max_length: drop utterance which is greater than max_length(10ms)
|
||||||
|
min_length: drop utterance which is less than min_length(10ms)
|
||||||
|
token_max_length: drop utterance which is greater than
|
||||||
|
token_max_length, especially when use char unit for
|
||||||
|
english modeling
|
||||||
|
token_min_length: drop utterance which is
|
||||||
|
less than token_max_length
|
||||||
|
min_output_input_ratio: minimal ration of
|
||||||
|
token_length / feats_length(10ms)
|
||||||
|
max_output_input_ratio: maximum ration of
|
||||||
|
token_length / feats_length(10ms)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, wav, label, sample_rate}]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
||||||
|
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
||||||
|
del sample['audio_data']
|
||||||
|
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
||||||
|
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
||||||
|
if num_frames < min_length:
|
||||||
|
continue
|
||||||
|
if num_frames > max_length:
|
||||||
|
continue
|
||||||
|
if len(sample['text_token']) < token_min_length:
|
||||||
|
continue
|
||||||
|
if len(sample['text_token']) > token_max_length:
|
||||||
|
continue
|
||||||
|
if len(sample['speech_token']) == 0:
|
||||||
|
continue
|
||||||
|
if num_frames != 0:
|
||||||
|
if len(sample['text_token']) / num_frames < min_output_input_ratio:
|
||||||
|
continue
|
||||||
|
if len(sample['text_token']) / num_frames > max_output_input_ratio:
|
||||||
|
continue
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
|
||||||
|
""" Resample data.
|
||||||
|
Inplace operation.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, wav, label, sample_rate}]
|
||||||
|
resample_rate: target resample rate
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, wav, label, sample_rate}]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
assert 'sample_rate' in sample
|
||||||
|
assert 'speech' in sample
|
||||||
|
sample_rate = sample['sample_rate']
|
||||||
|
waveform = sample['speech']
|
||||||
|
if sample_rate != resample_rate:
|
||||||
|
if sample_rate < min_sample_rate:
|
||||||
|
continue
|
||||||
|
sample['sample_rate'] = resample_rate
|
||||||
|
sample['speech'] = torchaudio.transforms.Resample(
|
||||||
|
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
|
||||||
|
max_val = sample['speech'].abs().max()
|
||||||
|
if max_val > 1:
|
||||||
|
sample['speech'] /= max_val
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def truncate(data, truncate_length=24576, mode='train'):
|
||||||
|
""" Truncate data.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, wav, label, sample_rate}]
|
||||||
|
truncate_length: truncate length
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, wav, label, sample_rate}]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
waveform = sample['speech']
|
||||||
|
if waveform.shape[1] > truncate_length:
|
||||||
|
start = random.randint(0, waveform.shape[1] - truncate_length)
|
||||||
|
waveform = waveform[:, start: start + truncate_length]
|
||||||
|
else:
|
||||||
|
waveform = torch.concat([waveform, torch.zeros(1, truncate_length - waveform.shape[1])], dim=1)
|
||||||
|
sample['speech'] = waveform
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank(data,
|
||||||
|
feat_extractor,
|
||||||
|
mode='train'):
|
||||||
|
""" Extract fbank
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, wav, label, sample_rate}]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, feat, label}]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
assert 'sample_rate' in sample
|
||||||
|
assert 'speech' in sample
|
||||||
|
assert 'utt' in sample
|
||||||
|
assert 'text_token' in sample
|
||||||
|
waveform = sample['speech']
|
||||||
|
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
||||||
|
sample['speech_feat'] = mat
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def compute_f0(data, sample_rate, hop_size, mode='train'):
|
||||||
|
""" Extract f0
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, wav, label, sample_rate}]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, feat, label}]
|
||||||
|
"""
|
||||||
|
frame_period = hop_size * 1000 / sample_rate
|
||||||
|
for sample in data:
|
||||||
|
assert 'sample_rate' in sample
|
||||||
|
assert 'speech' in sample
|
||||||
|
assert 'utt' in sample
|
||||||
|
assert 'text_token' in sample
|
||||||
|
waveform = sample['speech']
|
||||||
|
_f0, t = pw.harvest(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)
|
||||||
|
if sum(_f0 != 0) < 5: # this happens when the algorithm fails
|
||||||
|
_f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
|
||||||
|
f0 = pw.stonemask(waveform.squeeze(dim=0).numpy().astype('double'), _f0, t, sample_rate)
|
||||||
|
f0 = F.interpolate(torch.from_numpy(f0).view(1, 1, -1), size=sample['speech_feat'].shape[0], mode='linear').view(-1)
|
||||||
|
sample['pitch_feat'] = f0
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def parse_embedding(data, normalize, mode='train'):
|
||||||
|
""" Parse utt_embedding/spk_embedding
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, wav, label, sample_rate}]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, feat, label}]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
||||||
|
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
|
||||||
|
if normalize:
|
||||||
|
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
|
||||||
|
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def tokenize(data, get_tokenizer, allowed_special, mode='train'):
|
||||||
|
""" Decode text to chars or BPE
|
||||||
|
Inplace operation
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, wav, txt, sample_rate}]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, wav, txt, tokens, label, sample_rate}]
|
||||||
|
"""
|
||||||
|
tokenizer = get_tokenizer()
|
||||||
|
for sample in data:
|
||||||
|
assert 'text' in sample
|
||||||
|
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
|
||||||
|
if mode == 'inference':
|
||||||
|
sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def shuffle(data, shuffle_size=10000, mode='train'):
|
||||||
|
""" Local shuffle the data
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, feat, label}]
|
||||||
|
shuffle_size: buffer size for shuffle
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, feat, label}]
|
||||||
|
"""
|
||||||
|
buf = []
|
||||||
|
for sample in data:
|
||||||
|
buf.append(sample)
|
||||||
|
if len(buf) >= shuffle_size:
|
||||||
|
random.shuffle(buf)
|
||||||
|
for x in buf:
|
||||||
|
yield x
|
||||||
|
buf = []
|
||||||
|
# The sample left over
|
||||||
|
random.shuffle(buf)
|
||||||
|
for x in buf:
|
||||||
|
yield x
|
||||||
|
|
||||||
|
|
||||||
|
def sort(data, sort_size=500, mode='train'):
|
||||||
|
""" Sort the data by feature length.
|
||||||
|
Sort is used after shuffle and before batch, so we can group
|
||||||
|
utts with similar lengths into a batch, and `sort_size` should
|
||||||
|
be less than `shuffle_size`
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, feat, label}]
|
||||||
|
sort_size: buffer size for sort
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, feat, label}]
|
||||||
|
"""
|
||||||
|
|
||||||
|
buf = []
|
||||||
|
for sample in data:
|
||||||
|
buf.append(sample)
|
||||||
|
if len(buf) >= sort_size:
|
||||||
|
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
||||||
|
for x in buf:
|
||||||
|
yield x
|
||||||
|
buf = []
|
||||||
|
# The sample left over
|
||||||
|
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
||||||
|
for x in buf:
|
||||||
|
yield x
|
||||||
|
|
||||||
|
|
||||||
|
def static_batch(data, batch_size=16):
|
||||||
|
""" Static batch the data by `batch_size`
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, feat, label}]
|
||||||
|
batch_size: batch size
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[List[{key, feat, label}]]
|
||||||
|
"""
|
||||||
|
buf = []
|
||||||
|
for sample in data:
|
||||||
|
buf.append(sample)
|
||||||
|
if len(buf) >= batch_size:
|
||||||
|
yield buf
|
||||||
|
buf = []
|
||||||
|
if len(buf) > 0:
|
||||||
|
yield buf
|
||||||
|
|
||||||
|
|
||||||
|
def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
|
||||||
|
""" Dynamic batch the data until the total frames in batch
|
||||||
|
reach `max_frames_in_batch`
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, feat, label}]
|
||||||
|
max_frames_in_batch: max_frames in one batch
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[List[{key, feat, label}]]
|
||||||
|
"""
|
||||||
|
buf = []
|
||||||
|
longest_frames = 0
|
||||||
|
for sample in data:
|
||||||
|
assert 'speech_feat' in sample
|
||||||
|
assert isinstance(sample['speech_feat'], torch.Tensor)
|
||||||
|
new_sample_frames = sample['speech_feat'].size(0)
|
||||||
|
longest_frames = max(longest_frames, new_sample_frames)
|
||||||
|
frames_after_padding = longest_frames * (len(buf) + 1)
|
||||||
|
if frames_after_padding > max_frames_in_batch:
|
||||||
|
yield buf
|
||||||
|
buf = [sample]
|
||||||
|
longest_frames = new_sample_frames
|
||||||
|
else:
|
||||||
|
buf.append(sample)
|
||||||
|
if len(buf) > 0:
|
||||||
|
yield buf
|
||||||
|
|
||||||
|
|
||||||
|
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
|
||||||
|
""" Wrapper for static/dynamic batch
|
||||||
|
"""
|
||||||
|
if mode == 'inference':
|
||||||
|
return static_batch(data, 1)
|
||||||
|
else:
|
||||||
|
if batch_type == 'static':
|
||||||
|
return static_batch(data, batch_size)
|
||||||
|
elif batch_type == 'dynamic':
|
||||||
|
return dynamic_batch(data, max_frames_in_batch)
|
||||||
|
else:
|
||||||
|
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
||||||
|
|
||||||
|
|
||||||
|
def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
|
||||||
|
""" Padding the data into training data
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[List[{key, feat, label}]]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
assert isinstance(sample, list)
|
||||||
|
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
|
||||||
|
dtype=torch.int32)
|
||||||
|
order = torch.argsort(speech_feat_len, descending=True)
|
||||||
|
|
||||||
|
utts = [sample[i]['utt'] for i in order]
|
||||||
|
speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
|
||||||
|
speech_len = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
|
||||||
|
speech = pad_sequence(speech, batch_first=True, padding_value=0)
|
||||||
|
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
||||||
|
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
||||||
|
speech_token = pad_sequence(speech_token,
|
||||||
|
batch_first=True,
|
||||||
|
padding_value=0)
|
||||||
|
speech_feat = [sample[i]['speech_feat'] for i in order]
|
||||||
|
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
|
||||||
|
speech_feat = pad_sequence(speech_feat,
|
||||||
|
batch_first=True,
|
||||||
|
padding_value=0)
|
||||||
|
text = [sample[i]['text'] for i in order]
|
||||||
|
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
|
||||||
|
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
|
||||||
|
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
|
||||||
|
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
|
||||||
|
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
||||||
|
batch = {
|
||||||
|
"utts": utts,
|
||||||
|
"speech": speech,
|
||||||
|
"speech_len": speech_len,
|
||||||
|
"speech_token": speech_token,
|
||||||
|
"speech_token_len": speech_token_len,
|
||||||
|
"speech_feat": speech_feat,
|
||||||
|
"speech_feat_len": speech_feat_len,
|
||||||
|
"text": text,
|
||||||
|
"text_token": text_token,
|
||||||
|
"text_token_len": text_token_len,
|
||||||
|
"utt_embedding": utt_embedding,
|
||||||
|
"spk_embedding": spk_embedding,
|
||||||
|
}
|
||||||
|
if dpo:
|
||||||
|
reject_speech_token = [torch.tensor(sample[i]['reject_speech_token']) for i in order]
|
||||||
|
reject_speech_token_len = torch.tensor([i.size(0) for i in reject_speech_token], dtype=torch.int32)
|
||||||
|
reject_speech_token = pad_sequence(reject_speech_token,
|
||||||
|
batch_first=True,
|
||||||
|
padding_value=0)
|
||||||
|
batch['reject_speech_token'] = reject_speech_token
|
||||||
|
batch['reject_speech_token_len'] = reject_speech_token_len
|
||||||
|
if gan is True:
|
||||||
|
# in gan train, we need pitch_feat
|
||||||
|
pitch_feat = [sample[i]['pitch_feat'] for i in order]
|
||||||
|
pitch_feat_len = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
|
||||||
|
pitch_feat = pad_sequence(pitch_feat,
|
||||||
|
batch_first=True,
|
||||||
|
padding_value=0)
|
||||||
|
batch["pitch_feat"] = pitch_feat
|
||||||
|
batch["pitch_feat_len"] = pitch_feat_len
|
||||||
|
else:
|
||||||
|
# only gan train needs speech, delete it to save memory
|
||||||
|
del batch["speech"]
|
||||||
|
del batch["speech_len"]
|
||||||
|
if mode == 'inference':
|
||||||
|
tts_text = [sample[i]['tts_text'] for i in order]
|
||||||
|
tts_index = [sample[i]['tts_index'] for i in order]
|
||||||
|
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
|
||||||
|
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
|
||||||
|
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
|
||||||
|
batch.update({'tts_text': tts_text,
|
||||||
|
'tts_index': tts_index,
|
||||||
|
'tts_text_token': tts_text_token,
|
||||||
|
'tts_text_token_len': tts_text_token_len})
|
||||||
|
if use_spk_embedding is True:
|
||||||
|
batch["embedding"] = batch["spk_embedding"]
|
||||||
|
else:
|
||||||
|
batch["embedding"] = batch["utt_embedding"]
|
||||||
|
yield batch
|
||||||
556
cosyvoice/llm/llm_dpo.py
Normal file
556
cosyvoice/llm/llm_dpo.py
Normal file
@@ -0,0 +1,556 @@
|
|||||||
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
from typing import Dict, Optional, Callable, List, Generator
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from transformers import Qwen2ForCausalLM
|
||||||
|
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
||||||
|
from cosyvoice.utils.common import IGNORE_ID
|
||||||
|
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
||||||
|
from cosyvoice.utils.common import th_accuracy
|
||||||
|
from cosyvoice.utils.file_utils import logging
|
||||||
|
from cosyvoice.utils.mask import make_pad_mask
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerLM(torch.nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
text_encoder_input_size: int,
|
||||||
|
llm_input_size: int,
|
||||||
|
llm_output_size: int,
|
||||||
|
text_token_size: int,
|
||||||
|
speech_token_size: int,
|
||||||
|
text_encoder: torch.nn.Module,
|
||||||
|
llm: torch.nn.Module,
|
||||||
|
sampling: Callable,
|
||||||
|
length_normalized_loss: bool = True,
|
||||||
|
lsm_weight: float = 0.0,
|
||||||
|
spk_embed_dim: int = 192,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.llm_input_size = llm_input_size
|
||||||
|
self.speech_token_size = speech_token_size
|
||||||
|
# 1. build text token inputs related modules
|
||||||
|
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
|
||||||
|
self.text_encoder = text_encoder
|
||||||
|
self.text_encoder_affine_layer = nn.Linear(
|
||||||
|
self.text_encoder.output_size(),
|
||||||
|
llm_input_size
|
||||||
|
)
|
||||||
|
|
||||||
|
# 2. build speech token language model related modules
|
||||||
|
self.sos_eos = 0
|
||||||
|
self.task_id = 1
|
||||||
|
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
||||||
|
self.llm = llm
|
||||||
|
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
|
||||||
|
self.criterion_ce = LabelSmoothingLoss(
|
||||||
|
size=speech_token_size + 1,
|
||||||
|
padding_idx=IGNORE_ID,
|
||||||
|
smoothing=lsm_weight,
|
||||||
|
normalize_length=length_normalized_loss,
|
||||||
|
)
|
||||||
|
|
||||||
|
# 3. [Optional] build speech token related modules
|
||||||
|
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
|
||||||
|
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
|
||||||
|
|
||||||
|
# 4. sampling method
|
||||||
|
self.sampling = sampling
|
||||||
|
|
||||||
|
def encode(
|
||||||
|
self,
|
||||||
|
text: torch.Tensor,
|
||||||
|
text_lengths: torch.Tensor,
|
||||||
|
):
|
||||||
|
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
|
||||||
|
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
|
||||||
|
encoder_out = self.text_encoder_affine_layer(encoder_out)
|
||||||
|
return encoder_out, encoder_out_lens
|
||||||
|
|
||||||
|
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
||||||
|
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
||||||
|
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
||||||
|
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
|
||||||
|
for i in range(len(text_token))]
|
||||||
|
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
||||||
|
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
||||||
|
return lm_input, lm_input_len
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
batch: dict,
|
||||||
|
device: torch.device,
|
||||||
|
) -> Dict[str, Optional[torch.Tensor]]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
text: (B, L, D)
|
||||||
|
text_lengths: (B,)
|
||||||
|
audio: (B, T, N) or (B, T)
|
||||||
|
audio_lengths: (B,)
|
||||||
|
"""
|
||||||
|
text_token = batch['text_token'].to(device)
|
||||||
|
text_token_len = batch['text_token_len'].to(device)
|
||||||
|
speech_token = batch['speech_token'].to(device)
|
||||||
|
speech_token_len = batch['speech_token_len'].to(device)
|
||||||
|
embedding = batch['embedding'].to(device)
|
||||||
|
|
||||||
|
# 1. prepare llm_target
|
||||||
|
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
||||||
|
[self.speech_token_size]) for i in range(text_token.size(0))]
|
||||||
|
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
||||||
|
|
||||||
|
# 1. encode text_token
|
||||||
|
text_token = self.text_embedding(text_token)
|
||||||
|
text_token, text_token_len = self.encode(text_token, text_token_len)
|
||||||
|
|
||||||
|
# 2. embedding projection
|
||||||
|
embedding = F.normalize(embedding, dim=1)
|
||||||
|
embedding = self.spk_embed_affine_layer(embedding)
|
||||||
|
embedding = embedding.unsqueeze(1)
|
||||||
|
|
||||||
|
# 3. eos and task_id
|
||||||
|
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
|
||||||
|
# 4. encode speech_token
|
||||||
|
speech_token = self.speech_embedding(speech_token)
|
||||||
|
|
||||||
|
# 5. unpad and pad
|
||||||
|
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
|
||||||
|
task_id_emb, speech_token, speech_token_len)
|
||||||
|
|
||||||
|
# 6. run lm forward
|
||||||
|
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
||||||
|
logits = self.llm_decoder(lm_output)
|
||||||
|
loss = self.criterion_ce(logits, lm_target)
|
||||||
|
acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
|
||||||
|
return {'loss': loss, 'acc': acc}
|
||||||
|
|
||||||
|
def sampling_ids(
|
||||||
|
self,
|
||||||
|
weighted_scores: torch.Tensor,
|
||||||
|
decoded_tokens: List,
|
||||||
|
sampling: int,
|
||||||
|
ignore_eos: bool = True,
|
||||||
|
):
|
||||||
|
num_trials, max_trials = 0, 100
|
||||||
|
while True:
|
||||||
|
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
|
||||||
|
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
||||||
|
break
|
||||||
|
num_trials += 1
|
||||||
|
if num_trials > max_trials:
|
||||||
|
raise RuntimeError('sampling reaches max_trials {} and still get eos when ignore_eos is True, check your input!'.format(max_trials))
|
||||||
|
return top_ids
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def inference(
|
||||||
|
self,
|
||||||
|
text: torch.Tensor,
|
||||||
|
text_len: torch.Tensor,
|
||||||
|
prompt_text: torch.Tensor,
|
||||||
|
prompt_text_len: torch.Tensor,
|
||||||
|
prompt_speech_token: torch.Tensor,
|
||||||
|
prompt_speech_token_len: torch.Tensor,
|
||||||
|
embedding: torch.Tensor,
|
||||||
|
sampling: int = 25,
|
||||||
|
max_token_text_ratio: float = 20,
|
||||||
|
min_token_text_ratio: float = 2,
|
||||||
|
) -> Generator[torch.Tensor, None, None]:
|
||||||
|
if self.fp16 is True:
|
||||||
|
embedding = embedding.half()
|
||||||
|
|
||||||
|
device = text.device
|
||||||
|
text = torch.concat([prompt_text, text], dim=1)
|
||||||
|
text_len += prompt_text_len
|
||||||
|
text = self.text_embedding(text)
|
||||||
|
|
||||||
|
# 1. encode text
|
||||||
|
text, text_len = self.encode(text, text_len)
|
||||||
|
|
||||||
|
# 2. encode embedding
|
||||||
|
if embedding.shape[0] != 0:
|
||||||
|
embedding = F.normalize(embedding, dim=1)
|
||||||
|
embedding = self.spk_embed_affine_layer(embedding)
|
||||||
|
embedding = embedding.unsqueeze(dim=1)
|
||||||
|
else:
|
||||||
|
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)
|
||||||
|
|
||||||
|
# 3. concat llm_input
|
||||||
|
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
if prompt_speech_token_len != 0:
|
||||||
|
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||||
|
else:
|
||||||
|
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||||
|
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||||
|
|
||||||
|
# 4. cal min/max_length
|
||||||
|
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
||||||
|
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
||||||
|
|
||||||
|
# 5. step by step decode
|
||||||
|
out_tokens = []
|
||||||
|
offset = 0
|
||||||
|
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
||||||
|
for i in range(max_len):
|
||||||
|
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1,
|
||||||
|
att_cache=att_cache, cnn_cache=cnn_cache,
|
||||||
|
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
|
||||||
|
device=lm_input.device)).to(torch.bool))
|
||||||
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
|
# force continue decode first token
|
||||||
|
if i == 0:
|
||||||
|
logp[:, self.speech_token_size] = -float('inf')
|
||||||
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
||||||
|
if top_ids == self.speech_token_size:
|
||||||
|
break
|
||||||
|
# in stream mode, yield token one by one
|
||||||
|
yield top_ids
|
||||||
|
out_tokens.append(top_ids)
|
||||||
|
offset += lm_input.size(1)
|
||||||
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
|
|
||||||
|
|
||||||
|
class Qwen2Encoder(torch.nn.Module):
|
||||||
|
def __init__(self, pretrain_path):
|
||||||
|
super().__init__()
|
||||||
|
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
|
||||||
|
|
||||||
|
def forward_one_step(self, xs, masks, cache=None):
|
||||||
|
input_masks = masks[:, -1, :]
|
||||||
|
outs = self.model(
|
||||||
|
inputs_embeds=xs,
|
||||||
|
attention_mask=input_masks,
|
||||||
|
output_hidden_states=True,
|
||||||
|
return_dict=True,
|
||||||
|
use_cache=True,
|
||||||
|
past_key_values=cache,
|
||||||
|
)
|
||||||
|
xs = outs.hidden_states[-1]
|
||||||
|
new_cache = outs.past_key_values
|
||||||
|
return xs, new_cache
|
||||||
|
|
||||||
|
|
||||||
|
class Qwen2LM(TransformerLM):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
llm_input_size: int,
|
||||||
|
llm_output_size: int,
|
||||||
|
speech_token_size: int,
|
||||||
|
llm: torch.nn.Module,
|
||||||
|
sampling: Callable,
|
||||||
|
length_normalized_loss: bool = True,
|
||||||
|
lsm_weight: float = 0.0,
|
||||||
|
mix_ratio: List[int] = [5, 15],
|
||||||
|
dpo: bool = False,
|
||||||
|
):
|
||||||
|
torch.nn.Module.__init__(self)
|
||||||
|
self.llm_input_size = llm_input_size
|
||||||
|
self.llm_output_size = llm_output_size
|
||||||
|
self.speech_token_size = speech_token_size
|
||||||
|
|
||||||
|
# 2. build speech token language model related modules
|
||||||
|
self.sos_eos = 0
|
||||||
|
self.task_id = 1
|
||||||
|
self.fill_token = 2
|
||||||
|
|
||||||
|
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
||||||
|
self.llm = llm
|
||||||
|
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
|
||||||
|
self.criterion_ce = LabelSmoothingLoss(
|
||||||
|
size=speech_token_size + 3,
|
||||||
|
padding_idx=IGNORE_ID,
|
||||||
|
smoothing=lsm_weight,
|
||||||
|
normalize_length=length_normalized_loss,
|
||||||
|
)
|
||||||
|
|
||||||
|
# 3. [Optional] build speech token related modules
|
||||||
|
self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
|
||||||
|
|
||||||
|
# 4. sampling method
|
||||||
|
self.sampling = sampling
|
||||||
|
self.mix_ratio = mix_ratio
|
||||||
|
|
||||||
|
# 5. [Optional] set dpo
|
||||||
|
self.dpo = dpo
|
||||||
|
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
batch: dict,
|
||||||
|
device: torch.device,
|
||||||
|
) -> Dict[str, Optional[torch.Tensor]]:
|
||||||
|
text_token = batch['text_token'].to(device)
|
||||||
|
text_token_len = batch['text_token_len'].to(device)
|
||||||
|
speech_token = batch['speech_token'].to(device)
|
||||||
|
speech_token_len = batch['speech_token_len'].to(device)
|
||||||
|
if self.dpo:
|
||||||
|
reject_speech_token = batch['reject_speech_token'].to(device)
|
||||||
|
reject_speech_token_len = batch['reject_speech_token_len'].to(device)
|
||||||
|
# 1. prepare llm_target
|
||||||
|
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
target_ids = [torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
||||||
|
[self.speech_token_size]) for i in range(text_token.size(0))]
|
||||||
|
if self.dpo:
|
||||||
|
reject_target_ids = [torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + reject_speech_token[i, :reject_speech_token_len[i]].tolist() +
|
||||||
|
[self.speech_token_size]) for i in range(text_token.size(0))]
|
||||||
|
target_ids.extend(reject_target_ids)
|
||||||
|
target_ids = pad_sequence(target_ids, batch_first=True, padding_value=IGNORE_ID).to(device)
|
||||||
|
|
||||||
|
# 2. speech token projection
|
||||||
|
speech_emb = self.speech_embedding(speech_token)
|
||||||
|
if self.dpo:
|
||||||
|
reject_speech_emb = self.speech_embedding(reject_speech_token)
|
||||||
|
|
||||||
|
# 3. text token projection
|
||||||
|
text_token_lst = unpad_sequence(text_token, text_token_len, batch_first=True)
|
||||||
|
text_emb = [self.llm.model.model.embed_tokens(y) for y in text_token_lst]
|
||||||
|
|
||||||
|
# 4. prepare llm_input
|
||||||
|
speech_emb = unpad_sequence(speech_emb, speech_token_len.cpu(), batch_first=True)
|
||||||
|
input_emb = [torch.concat([sos_eos_emb.squeeze(dim=0), text_emb[i], task_id_emb.squeeze(dim=0), speech_emb[i]], dim=0)
|
||||||
|
for i in range(len(text_emb))]
|
||||||
|
if self.dpo:
|
||||||
|
reject_speech_emb = unpad_sequence(reject_speech_emb, reject_speech_token_len.cpu(), batch_first=True)
|
||||||
|
reject_input_emb = [torch.concat([sos_eos_emb.squeeze(dim=0), text_emb[i], task_id_emb.squeeze(dim=0), reject_speech_emb[i]], dim=0)
|
||||||
|
for i in range(len(text_emb))]
|
||||||
|
input_emb.extend(reject_input_emb)
|
||||||
|
input_emb_lengths = torch.tensor([i.size(0) for i in input_emb], dtype=torch.int32).to(device)
|
||||||
|
input_emb = pad_sequence(input_emb, batch_first=True, padding_value=IGNORE_ID).to(device)
|
||||||
|
|
||||||
|
attention_mask = ~make_pad_mask(input_emb_lengths)
|
||||||
|
|
||||||
|
result = self.llm.model(
|
||||||
|
inputs_embeds=input_emb,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
return_dict=True
|
||||||
|
)
|
||||||
|
hidden_states = result.hidden_states
|
||||||
|
logits = self.llm_decoder(hidden_states[-1])
|
||||||
|
loss = self.criterion_ce(logits[: speech_token.shape[0]], target_ids[: speech_token.shape[0]])
|
||||||
|
acc = th_accuracy(
|
||||||
|
logits[: speech_token.shape[0]].view(-1, self.speech_token_size + 3),
|
||||||
|
target_ids[: speech_token.shape[0]],
|
||||||
|
ignore_label=IGNORE_ID,
|
||||||
|
)
|
||||||
|
if not self.dpo:
|
||||||
|
return {
|
||||||
|
"loss": loss,
|
||||||
|
"acc": acc,
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
all_logps_sum, all_logps_mean = self.get_batch_logps(
|
||||||
|
logits, target_ids, attention_mask, text_token_len, average_log_prob=False, ignore_id=IGNORE_ID
|
||||||
|
)
|
||||||
|
chosen_logps = all_logps_sum[: speech_token.shape[0]]
|
||||||
|
rejected_logps = all_logps_sum[speech_token.shape[0]:]
|
||||||
|
return {
|
||||||
|
"loss": loss,
|
||||||
|
"acc": acc,
|
||||||
|
"chosen_logps": chosen_logps,
|
||||||
|
"rejected_logps": rejected_logps
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def get_batch_logps(
|
||||||
|
self,
|
||||||
|
logits: torch.FloatTensor,
|
||||||
|
labels: torch.LongTensor,
|
||||||
|
attention_mask,
|
||||||
|
prompt_token_lens,
|
||||||
|
average_log_prob: bool = False,
|
||||||
|
ignore_id: int = -1,
|
||||||
|
) -> torch.FloatTensor:
|
||||||
|
"""Compute the log probabilities of the given labels under the given logits.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size)
|
||||||
|
labels: Labels for which to compute the log probabilities. Label tokens with a value of -100 are ignored. Shape: (batch_size, sequence_length)
|
||||||
|
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits.
|
||||||
|
"""
|
||||||
|
assert average_log_prob == False
|
||||||
|
assert logits.shape[:-1] == labels.shape
|
||||||
|
labels = labels[:, 1:].clone()
|
||||||
|
logits = logits[:, :-1, :]
|
||||||
|
loss_masks = attention_mask.clone().bool()
|
||||||
|
# mask prompts
|
||||||
|
for mask, text_token_len in zip(loss_masks, prompt_token_lens):
|
||||||
|
mask[:text_token_len + 1] = False
|
||||||
|
loss_masks = loss_masks[:, 1:]
|
||||||
|
labels[loss_masks == False] = 0
|
||||||
|
# dummy token; we'll ignore the losses on these tokens later
|
||||||
|
ignore = labels == ignore_id
|
||||||
|
labels = labels.masked_fill(ignore, 0) # avoid -1 index
|
||||||
|
per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2) # (bs, time,)
|
||||||
|
logprobs_sums = (per_token_logps * loss_masks).sum(-1)
|
||||||
|
logprobs_means = (per_token_logps * loss_masks).sum(-1) / loss_masks.sum(-1)
|
||||||
|
return logprobs_sums, logprobs_means
|
||||||
|
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def inference(
|
||||||
|
self,
|
||||||
|
text: torch.Tensor,
|
||||||
|
text_len: torch.Tensor,
|
||||||
|
prompt_text: torch.Tensor,
|
||||||
|
prompt_text_len: torch.Tensor,
|
||||||
|
prompt_speech_token: torch.Tensor,
|
||||||
|
prompt_speech_token_len: torch.Tensor,
|
||||||
|
embedding: torch.Tensor,
|
||||||
|
sampling: int = 25,
|
||||||
|
max_token_text_ratio: float = 20,
|
||||||
|
min_token_text_ratio: float = 2,
|
||||||
|
) -> Generator[torch.Tensor, None, None]:
|
||||||
|
device = text.device
|
||||||
|
text = torch.concat([prompt_text, text], dim=1)
|
||||||
|
text_len += prompt_text_len
|
||||||
|
text = self.llm.model.model.embed_tokens(text)
|
||||||
|
|
||||||
|
# 3. concat llm_input
|
||||||
|
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
if prompt_speech_token_len != 0:
|
||||||
|
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||||
|
else:
|
||||||
|
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||||
|
lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||||
|
|
||||||
|
# 4. cal min/max_length
|
||||||
|
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
||||||
|
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
||||||
|
|
||||||
|
# 5. step by step decode
|
||||||
|
out_tokens = []
|
||||||
|
cache = None
|
||||||
|
for i in range(max_len):
|
||||||
|
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||||
|
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
|
||||||
|
cache=cache)
|
||||||
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
||||||
|
if top_ids == self.speech_token_size:
|
||||||
|
break
|
||||||
|
if top_ids > self.speech_token_size:
|
||||||
|
continue
|
||||||
|
# in stream mode, yield token one by one
|
||||||
|
yield top_ids
|
||||||
|
out_tokens.append(top_ids)
|
||||||
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def inference_bistream(
|
||||||
|
self,
|
||||||
|
text: Generator,
|
||||||
|
prompt_text: torch.Tensor,
|
||||||
|
prompt_text_len: torch.Tensor,
|
||||||
|
prompt_speech_token: torch.Tensor,
|
||||||
|
prompt_speech_token_len: torch.Tensor,
|
||||||
|
embedding: torch.Tensor,
|
||||||
|
sampling: int = 25,
|
||||||
|
max_token_text_ratio: float = 20,
|
||||||
|
min_token_text_ratio: float = 2,
|
||||||
|
) -> Generator[torch.Tensor, None, None]:
|
||||||
|
|
||||||
|
device = prompt_text.device
|
||||||
|
# 1. prepare input
|
||||||
|
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
if prompt_speech_token_len != 0:
|
||||||
|
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||||
|
else:
|
||||||
|
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
|
||||||
|
lm_input = torch.concat([sos_eos_emb], dim=1)
|
||||||
|
|
||||||
|
# 2. iterate text
|
||||||
|
out_tokens = []
|
||||||
|
cache = None
|
||||||
|
# NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
|
||||||
|
text_cache = self.llm.model.model.embed_tokens(prompt_text)
|
||||||
|
next_fill_index = -1
|
||||||
|
for this_text in text:
|
||||||
|
text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
|
||||||
|
# prompt_speech_token_emb not empty, try append to lm_input
|
||||||
|
while prompt_speech_token_emb.size(1) != 0:
|
||||||
|
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||||
|
lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]]
|
||||||
|
logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1)))
|
||||||
|
lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1)
|
||||||
|
text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:]
|
||||||
|
else:
|
||||||
|
logging.info('not enough text token to decode, wait for more')
|
||||||
|
break
|
||||||
|
# no prompt_speech_token_emb remain, can decode some speech token
|
||||||
|
if prompt_speech_token_emb.size(1) == 0:
|
||||||
|
if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
|
||||||
|
logging.info('get fill token, need to append more text token')
|
||||||
|
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||||
|
lm_input_text = text_cache[:, :self.mix_ratio[0]]
|
||||||
|
logging.info('append {} text token'.format(lm_input_text.size(1)))
|
||||||
|
if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
|
||||||
|
lm_input = lm_input_text
|
||||||
|
else:
|
||||||
|
lm_input = torch.concat([lm_input, lm_input_text], dim=1)
|
||||||
|
text_cache = text_cache[:, self.mix_ratio[0]:]
|
||||||
|
else:
|
||||||
|
logging.info('not enough text token to decode, wait for more')
|
||||||
|
continue
|
||||||
|
while True:
|
||||||
|
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
||||||
|
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||||
|
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
||||||
|
cache=cache)
|
||||||
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
|
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
||||||
|
top_ids = self.speech_token_size + 2
|
||||||
|
next_fill_index += (self.mix_ratio[1] + 1)
|
||||||
|
else:
|
||||||
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item()
|
||||||
|
if top_ids == self.speech_token_size + 2:
|
||||||
|
next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
|
||||||
|
logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
|
||||||
|
out_tokens.append(top_ids)
|
||||||
|
if top_ids >= self.speech_token_size:
|
||||||
|
if top_ids == self.speech_token_size + 2:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise ValueError('should not get token {}'.format(top_ids))
|
||||||
|
yield top_ids
|
||||||
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
|
|
||||||
|
# 3. final decode
|
||||||
|
lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1)
|
||||||
|
logging.info('no more text token, decode until met eos')
|
||||||
|
while True:
|
||||||
|
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
||||||
|
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||||
|
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
||||||
|
cache=cache)
|
||||||
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item()
|
||||||
|
out_tokens.append(top_ids)
|
||||||
|
if top_ids >= self.speech_token_size:
|
||||||
|
if top_ids == self.speech_token_size:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise ValueError('should not get token {}'.format(top_ids))
|
||||||
|
# in stream mode, yield token one by one
|
||||||
|
yield top_ids
|
||||||
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
184
cosyvoice/utils/executor_dpo.py
Normal file
184
cosyvoice/utils/executor_dpo.py
Normal file
@@ -0,0 +1,184 @@
|
|||||||
|
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
||||||
|
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from contextlib import nullcontext
|
||||||
|
import os
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
|
||||||
|
from cosyvoice.utils.train_utils_dpo import update_parameter_and_lr, log_per_step, log_per_save, batch_forward, batch_backward, save_model, cosyvoice_join
|
||||||
|
from cosyvoice.utils.losses_dpo import DPOLoss
|
||||||
|
|
||||||
|
|
||||||
|
class Executor:
|
||||||
|
|
||||||
|
def __init__(self, gan: bool = False, dpo: bool = False, beta: float = 0.01, label_smoothing: float = 0.0, ipo: bool = False):
|
||||||
|
self.gan = gan
|
||||||
|
self.step = 0
|
||||||
|
self.epoch = 0
|
||||||
|
self.rank = int(os.environ.get('RANK', 0))
|
||||||
|
self.device = torch.device('cuda:{}'.format(self.rank))
|
||||||
|
self.dpo = dpo
|
||||||
|
if self.dpo:
|
||||||
|
self.dpo_loss = DPOLoss(beta, label_smoothing, ipo)
|
||||||
|
else:
|
||||||
|
self.dpo_loss = None
|
||||||
|
|
||||||
|
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=None):
|
||||||
|
''' Train one epoch
|
||||||
|
'''
|
||||||
|
|
||||||
|
lr = optimizer.param_groups[0]['lr']
|
||||||
|
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
||||||
|
logging.info('using accumulate grad, new batch size is {} times'
|
||||||
|
' larger than before'.format(info_dict['accum_grad']))
|
||||||
|
# A context manager to be used in conjunction with an instance of
|
||||||
|
# torch.nn.parallel.DistributedDataParallel to be able to train
|
||||||
|
# with uneven inputs across participating processes.
|
||||||
|
model.train()
|
||||||
|
if self.dpo:
|
||||||
|
assert ref_model is not None
|
||||||
|
ref_model.eval()
|
||||||
|
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
||||||
|
with model_context():
|
||||||
|
for batch_idx, batch_dict in enumerate(train_data_loader):
|
||||||
|
info_dict["tag"] = "TRAIN"
|
||||||
|
info_dict["step"] = self.step
|
||||||
|
info_dict["epoch"] = self.epoch
|
||||||
|
info_dict["batch_idx"] = batch_idx
|
||||||
|
if cosyvoice_join(group_join, info_dict):
|
||||||
|
break
|
||||||
|
|
||||||
|
# Disable gradient synchronizations across DDP processes.
|
||||||
|
# Within this context, gradients will be accumulated on module
|
||||||
|
# variables, which will later be synchronized.
|
||||||
|
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
||||||
|
context = model.no_sync
|
||||||
|
# Used for single gpu training and DDP gradient synchronization
|
||||||
|
# processes.
|
||||||
|
else:
|
||||||
|
context = nullcontext
|
||||||
|
|
||||||
|
with context():
|
||||||
|
info_dict = batch_forward(model, batch_dict, scaler, info_dict, ref_model, self.dpo_loss)
|
||||||
|
info_dict = batch_backward(model, scaler, info_dict)
|
||||||
|
|
||||||
|
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
||||||
|
log_per_step(writer, info_dict)
|
||||||
|
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
||||||
|
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
|
||||||
|
(batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||||
|
dist.barrier()
|
||||||
|
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False, ref_model=ref_model, dpo_loss=self.dpo_loss)
|
||||||
|
model.train()
|
||||||
|
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||||
|
self.step += 1
|
||||||
|
dist.barrier()
|
||||||
|
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True, ref_model=ref_model, dpo_loss=self.dpo_loss)
|
||||||
|
|
||||||
|
def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
||||||
|
writer, info_dict, scaler, group_join):
|
||||||
|
''' Train one epoch
|
||||||
|
'''
|
||||||
|
|
||||||
|
lr = optimizer.param_groups[0]['lr']
|
||||||
|
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
||||||
|
logging.info('using accumulate grad, new batch size is {} times'
|
||||||
|
' larger than before'.format(info_dict['accum_grad']))
|
||||||
|
# A context manager to be used in conjunction with an instance of
|
||||||
|
# torch.nn.parallel.DistributedDataParallel to be able to train
|
||||||
|
# with uneven inputs across participating processes.
|
||||||
|
model.train()
|
||||||
|
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
||||||
|
with model_context():
|
||||||
|
for batch_idx, batch_dict in enumerate(train_data_loader):
|
||||||
|
info_dict["tag"] = "TRAIN"
|
||||||
|
info_dict["step"] = self.step
|
||||||
|
info_dict["epoch"] = self.epoch
|
||||||
|
info_dict["batch_idx"] = batch_idx
|
||||||
|
if cosyvoice_join(group_join, info_dict):
|
||||||
|
break
|
||||||
|
|
||||||
|
# Disable gradient synchronizations across DDP processes.
|
||||||
|
# Within this context, gradients will be accumulated on module
|
||||||
|
# variables, which will later be synchronized.
|
||||||
|
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
||||||
|
context = model.no_sync
|
||||||
|
# Used for single gpu training and DDP gradient synchronization
|
||||||
|
# processes.
|
||||||
|
else:
|
||||||
|
context = nullcontext
|
||||||
|
|
||||||
|
with context():
|
||||||
|
batch_dict['turn'] = 'discriminator'
|
||||||
|
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
||||||
|
info_dict = batch_backward(model, scaler, info_dict)
|
||||||
|
info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
log_per_step(writer, info_dict)
|
||||||
|
with context():
|
||||||
|
batch_dict['turn'] = 'generator'
|
||||||
|
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
||||||
|
info_dict = batch_backward(model, scaler, info_dict)
|
||||||
|
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
||||||
|
optimizer_d.zero_grad()
|
||||||
|
log_per_step(writer, info_dict)
|
||||||
|
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
||||||
|
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
|
||||||
|
(batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||||
|
dist.barrier()
|
||||||
|
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
||||||
|
model.train()
|
||||||
|
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||||
|
self.step += 1
|
||||||
|
dist.barrier()
|
||||||
|
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def cv(self, model, cv_data_loader, writer, info_dict, on_batch_end=True, ref_model=None, dpo_loss=None):
|
||||||
|
''' Cross validation on
|
||||||
|
'''
|
||||||
|
logging.info('Epoch {} Step {} on_batch_end {} CV rank {}'.format(self.epoch, self.step + 1, on_batch_end, self.rank))
|
||||||
|
model.eval()
|
||||||
|
if self.dpo:
|
||||||
|
assert ref_model is not None
|
||||||
|
ref_model.eval()
|
||||||
|
total_num_utts, total_loss_dict = 0, {} # avoid division by 0
|
||||||
|
for batch_idx, batch_dict in enumerate(cv_data_loader):
|
||||||
|
info_dict["tag"] = "CV"
|
||||||
|
info_dict["step"] = self.step
|
||||||
|
info_dict["epoch"] = self.epoch
|
||||||
|
info_dict["batch_idx"] = batch_idx
|
||||||
|
|
||||||
|
num_utts = len(batch_dict["utts"])
|
||||||
|
total_num_utts += num_utts
|
||||||
|
|
||||||
|
if self.gan is True:
|
||||||
|
batch_dict['turn'] = 'generator'
|
||||||
|
info_dict = batch_forward(model, batch_dict, None, info_dict, ref_model, dpo_loss)
|
||||||
|
|
||||||
|
for k, v in info_dict['loss_dict'].items():
|
||||||
|
if k not in total_loss_dict:
|
||||||
|
total_loss_dict[k] = []
|
||||||
|
total_loss_dict[k].append(v.item() * num_utts)
|
||||||
|
log_per_step(None, info_dict)
|
||||||
|
for k, v in total_loss_dict.items():
|
||||||
|
total_loss_dict[k] = sum(v) / total_num_utts
|
||||||
|
info_dict['loss_dict'] = total_loss_dict
|
||||||
|
log_per_save(writer, info_dict)
|
||||||
|
model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
|
||||||
|
save_model(model, model_name, info_dict)
|
||||||
57
cosyvoice/utils/losses_dpo.py
Normal file
57
cosyvoice/utils/losses_dpo.py
Normal file
@@ -0,0 +1,57 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
|
||||||
|
def tpr_loss(disc_real_outputs, disc_generated_outputs, tau):
|
||||||
|
loss = 0
|
||||||
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||||
|
m_DG = torch.median((dr - dg))
|
||||||
|
L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
|
||||||
|
loss += tau - F.relu(tau - L_rel)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
def mel_loss(real_speech, generated_speech, mel_transforms):
|
||||||
|
loss = 0
|
||||||
|
for transform in mel_transforms:
|
||||||
|
mel_r = transform(real_speech)
|
||||||
|
mel_g = transform(generated_speech)
|
||||||
|
loss += F.l1_loss(mel_g, mel_r)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class DPOLoss(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
DPO Loss
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, beta: float, label_smoothing: float = 0.0, ipo: bool = False) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.beta = beta
|
||||||
|
self.label_smoothing = label_smoothing
|
||||||
|
self.ipo = ipo
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
policy_chosen_logps: torch.Tensor,
|
||||||
|
policy_rejected_logps: torch.Tensor,
|
||||||
|
reference_chosen_logps: torch.Tensor,
|
||||||
|
reference_rejected_logps: torch.Tensor,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||||
|
pi_logratios = policy_chosen_logps - policy_rejected_logps
|
||||||
|
ref_logratios = reference_chosen_logps - reference_rejected_logps
|
||||||
|
logits = pi_logratios - ref_logratios
|
||||||
|
if self.ipo:
|
||||||
|
losses = (logits - 1 / (2 * self.beta)) ** 2 # Eq. 17 of https://arxiv.org/pdf/2310.12036v2.pdf
|
||||||
|
else:
|
||||||
|
# Eq. 3 https://ericmitchell.ai/cdpo.pdf; label_smoothing=0 gives original DPO (Eq. 7 of https://arxiv.org/pdf/2305.18290.pdf)
|
||||||
|
losses = (
|
||||||
|
-F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
|
||||||
|
- F.logsigmoid(-self.beta * logits) * self.label_smoothing
|
||||||
|
)
|
||||||
|
loss = losses.mean()
|
||||||
|
chosen_rewards = self.beta * (policy_chosen_logps - reference_chosen_logps).detach()
|
||||||
|
rejected_rewards = self.beta * (policy_rejected_logps - reference_rejected_logps).detach()
|
||||||
|
|
||||||
|
return loss, chosen_rewards, rejected_rewards
|
||||||
364
cosyvoice/utils/train_utils_dpo.py
Normal file
364
cosyvoice/utils/train_utils_dpo.py
Normal file
@@ -0,0 +1,364 @@
|
|||||||
|
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
||||||
|
# 2023 Horizon Inc. (authors: Xingchen Song)
|
||||||
|
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import torch
|
||||||
|
import json
|
||||||
|
import re
|
||||||
|
import datetime
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
import deepspeed
|
||||||
|
import torch.optim as optim
|
||||||
|
import torch.distributed as dist
|
||||||
|
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from torch.nn.utils import clip_grad_norm_
|
||||||
|
|
||||||
|
from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live
|
||||||
|
|
||||||
|
from cosyvoice.dataset.dataset import Dataset
|
||||||
|
from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR
|
||||||
|
|
||||||
|
|
||||||
|
def init_distributed(args):
|
||||||
|
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
||||||
|
local_rank = int(os.environ.get('LOCAL_RANK', 0))
|
||||||
|
rank = int(os.environ.get('RANK', 0))
|
||||||
|
logging.info('training on multiple gpus, this gpu {}'.format(local_rank) +
|
||||||
|
', rank {}, world_size {}'.format(rank, world_size))
|
||||||
|
if args.train_engine == 'torch_ddp':
|
||||||
|
torch.cuda.set_device(local_rank)
|
||||||
|
dist.init_process_group(args.dist_backend)
|
||||||
|
else:
|
||||||
|
deepspeed.init_distributed(dist_backend=args.dist_backend)
|
||||||
|
return world_size, local_rank, rank
|
||||||
|
|
||||||
|
|
||||||
|
def init_dataset_and_dataloader(args, configs, gan):
|
||||||
|
data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
|
||||||
|
train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=True, partition=True)
|
||||||
|
cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=False, partition=False)
|
||||||
|
|
||||||
|
# do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
|
||||||
|
train_data_loader = DataLoader(train_dataset,
|
||||||
|
batch_size=None,
|
||||||
|
pin_memory=args.pin_memory,
|
||||||
|
num_workers=args.num_workers,
|
||||||
|
prefetch_factor=args.prefetch)
|
||||||
|
cv_data_loader = DataLoader(cv_dataset,
|
||||||
|
batch_size=None,
|
||||||
|
pin_memory=args.pin_memory,
|
||||||
|
num_workers=args.num_workers,
|
||||||
|
prefetch_factor=args.prefetch)
|
||||||
|
return train_dataset, cv_dataset, train_data_loader, cv_data_loader
|
||||||
|
|
||||||
|
|
||||||
|
def check_modify_and_save_config(args, configs):
|
||||||
|
if args.train_engine == "torch_ddp":
|
||||||
|
configs['train_conf']["dtype"] = 'fp32'
|
||||||
|
else:
|
||||||
|
with open(args.deepspeed_config, 'r') as fin:
|
||||||
|
ds_configs = json.load(fin)
|
||||||
|
if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
|
||||||
|
configs['train_conf']["dtype"] = "fp16"
|
||||||
|
elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
|
||||||
|
configs['train_conf']["dtype"] = "bf16"
|
||||||
|
else:
|
||||||
|
configs['train_conf']["dtype"] = "fp32"
|
||||||
|
assert ds_configs["train_micro_batch_size_per_gpu"] == 1
|
||||||
|
# if use deepspeed, override ddp config
|
||||||
|
configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] *
|
||||||
|
configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
|
||||||
|
configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
|
||||||
|
configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
|
||||||
|
configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
|
||||||
|
return configs
|
||||||
|
|
||||||
|
|
||||||
|
def wrap_cuda_model(args, model):
|
||||||
|
local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
|
||||||
|
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
||||||
|
if args.train_engine == "torch_ddp": # native pytorch ddp
|
||||||
|
assert (torch.cuda.is_available())
|
||||||
|
model.cuda()
|
||||||
|
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
|
||||||
|
else:
|
||||||
|
if int(os.environ.get('RANK', 0)) == 0:
|
||||||
|
logging.info("Estimating model states memory needs (zero2)...")
|
||||||
|
estimate_zero2_model_states_mem_needs_all_live(
|
||||||
|
model,
|
||||||
|
num_gpus_per_node=local_world_size,
|
||||||
|
num_nodes=world_size // local_world_size)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def init_optimizer_and_scheduler(args, configs, model, gan):
|
||||||
|
if gan is False:
|
||||||
|
if configs['train_conf']['optim'] == 'adam':
|
||||||
|
optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
elif configs['train_conf']['optim'] == 'adamw':
|
||||||
|
optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||||
|
|
||||||
|
if configs['train_conf']['scheduler'] == 'warmuplr':
|
||||||
|
scheduler_type = WarmupLR
|
||||||
|
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
||||||
|
scheduler_type = NoamHoldAnnealing
|
||||||
|
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||||
|
scheduler_type = ConstantLR
|
||||||
|
scheduler = ConstantLR(optimizer)
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||||
|
|
||||||
|
# use deepspeed optimizer for speedup
|
||||||
|
if args.train_engine == "deepspeed":
|
||||||
|
def scheduler(opt):
|
||||||
|
return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
|
||||||
|
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||||
|
args=args,
|
||||||
|
model=model,
|
||||||
|
optimizer=None,
|
||||||
|
lr_scheduler=scheduler,
|
||||||
|
model_parameters=model.parameters())
|
||||||
|
|
||||||
|
optimizer_d, scheduler_d = None, None
|
||||||
|
|
||||||
|
else:
|
||||||
|
# currently we wrap generator and discriminator in one model, so we cannot use deepspeed
|
||||||
|
if configs['train_conf']['optim'] == 'adam':
|
||||||
|
optimizer = optim.Adam(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
elif configs['train_conf']['optim'] == 'adamw':
|
||||||
|
optimizer = optim.AdamW(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||||
|
|
||||||
|
if configs['train_conf']['scheduler'] == 'warmuplr':
|
||||||
|
scheduler_type = WarmupLR
|
||||||
|
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
||||||
|
scheduler_type = NoamHoldAnnealing
|
||||||
|
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||||
|
scheduler_type = ConstantLR
|
||||||
|
scheduler = ConstantLR(optimizer)
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||||
|
|
||||||
|
if configs['train_conf']['optim_d'] == 'adam':
|
||||||
|
optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
elif configs['train_conf']['optim_d'] == 'adamw':
|
||||||
|
optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||||
|
|
||||||
|
if configs['train_conf']['scheduler_d'] == 'warmuplr':
|
||||||
|
scheduler_type = WarmupLR
|
||||||
|
scheduler_d = WarmupLR(optimizer_d, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler_d'] == 'NoamHoldAnnealing':
|
||||||
|
scheduler_type = NoamHoldAnnealing
|
||||||
|
scheduler_d = NoamHoldAnnealing(optimizer_d, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||||
|
scheduler_type = ConstantLR
|
||||||
|
scheduler_d = ConstantLR(optimizer_d)
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||||
|
return model, optimizer, scheduler, optimizer_d, scheduler_d
|
||||||
|
|
||||||
|
|
||||||
|
def init_summarywriter(args):
|
||||||
|
writer = None
|
||||||
|
if int(os.environ.get('RANK', 0)) == 0:
|
||||||
|
os.makedirs(args.model_dir, exist_ok=True)
|
||||||
|
writer = SummaryWriter(args.tensorboard_dir)
|
||||||
|
return writer
|
||||||
|
|
||||||
|
|
||||||
|
def save_model(model, model_name, info_dict):
|
||||||
|
rank = int(os.environ.get('RANK', 0))
|
||||||
|
model_dir = info_dict["model_dir"]
|
||||||
|
save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name))
|
||||||
|
|
||||||
|
if info_dict["train_engine"] == "torch_ddp":
|
||||||
|
if rank == 0:
|
||||||
|
torch.save({**model.module.state_dict(), 'epoch': info_dict['epoch'], 'step': info_dict['step']}, save_model_path)
|
||||||
|
else:
|
||||||
|
with torch.no_grad():
|
||||||
|
model.save_checkpoint(save_dir=model_dir,
|
||||||
|
tag=model_name,
|
||||||
|
client_state=info_dict)
|
||||||
|
if rank == 0:
|
||||||
|
info_path = re.sub('.pt$', '.yaml', save_model_path)
|
||||||
|
info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S')
|
||||||
|
with open(info_path, 'w') as fout:
|
||||||
|
data = yaml.dump(info_dict)
|
||||||
|
fout.write(data)
|
||||||
|
logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path))
|
||||||
|
|
||||||
|
|
||||||
|
def cosyvoice_join(group_join, info_dict):
|
||||||
|
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
||||||
|
local_rank = int(os.environ.get('LOCAL_RANK', 0))
|
||||||
|
rank = int(os.environ.get('RANK', 0))
|
||||||
|
|
||||||
|
if info_dict["batch_idx"] != 0:
|
||||||
|
# we try to join all rank in both ddp and deepspeed mode, in case different rank has different lr
|
||||||
|
try:
|
||||||
|
dist.monitored_barrier(group=group_join,
|
||||||
|
timeout=group_join.options._timeout)
|
||||||
|
return False
|
||||||
|
except RuntimeError as e:
|
||||||
|
logging.info("Detected uneven workload distribution: {}\n".format(e) +
|
||||||
|
"Break current worker to manually join all workers, " +
|
||||||
|
"world_size {}, current rank {}, current local_rank {}\n".
|
||||||
|
format(world_size, rank, local_rank))
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def batch_forward(model, batch, scaler, info_dict, ref_model=None, dpo_loss=None):
|
||||||
|
device = int(os.environ.get('LOCAL_RANK', 0))
|
||||||
|
|
||||||
|
dtype = info_dict["dtype"]
|
||||||
|
if dtype == "fp16":
|
||||||
|
dtype = torch.float16
|
||||||
|
elif dtype == "bf16":
|
||||||
|
dtype = torch.bfloat16
|
||||||
|
else: # fp32
|
||||||
|
dtype = torch.float32
|
||||||
|
|
||||||
|
if info_dict['train_engine'] == 'torch_ddp':
|
||||||
|
autocast = torch.cuda.amp.autocast(enabled=scaler is not None)
|
||||||
|
else:
|
||||||
|
autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
|
||||||
|
|
||||||
|
with autocast:
|
||||||
|
info_dict['loss_dict'] = model(batch, device)
|
||||||
|
if ref_model and dpo_loss:
|
||||||
|
chosen_logps = info_dict['loss_dict']["chosen_logps"]
|
||||||
|
rejected_logps = info_dict['loss_dict']["rejected_logps"]
|
||||||
|
sft_loss = info_dict['loss_dict']['loss']
|
||||||
|
with torch.no_grad():
|
||||||
|
ref_model = ref_model.to(device)
|
||||||
|
ref_loss_dict = ref_model(batch, device)
|
||||||
|
reference_chosen_logps = ref_loss_dict["chosen_logps"]
|
||||||
|
reference_rejected_logps = ref_loss_dict["rejected_logps"]
|
||||||
|
preference_loss, chosen_reward, reject_reward = dpo_loss(
|
||||||
|
chosen_logps, rejected_logps, reference_chosen_logps, reference_rejected_logps
|
||||||
|
)
|
||||||
|
dpo_acc = (chosen_reward > reject_reward).float().mean()
|
||||||
|
info_dict['loss_dict']["loss"] = preference_loss + sft_loss
|
||||||
|
info_dict['loss_dict']["sft_loss"] = sft_loss
|
||||||
|
info_dict['loss_dict']["dpo_loss"] = preference_loss
|
||||||
|
info_dict['loss_dict']["dpo_acc"] = dpo_acc
|
||||||
|
info_dict['loss_dict']["chosen_reward"] = chosen_reward.mean()
|
||||||
|
info_dict['loss_dict']["reject_reward"] = reject_reward.mean()
|
||||||
|
return info_dict
|
||||||
|
|
||||||
|
|
||||||
|
def batch_backward(model, scaler, info_dict):
|
||||||
|
if info_dict["train_engine"] == "deepspeed":
|
||||||
|
scaled_loss = model.backward(info_dict['loss_dict']['loss'])
|
||||||
|
else:
|
||||||
|
scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
|
||||||
|
if scaler is not None:
|
||||||
|
scaler.scale(scaled_loss).backward()
|
||||||
|
else:
|
||||||
|
scaled_loss.backward()
|
||||||
|
|
||||||
|
info_dict['loss_dict']['loss'] = scaled_loss
|
||||||
|
return info_dict
|
||||||
|
|
||||||
|
|
||||||
|
def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
|
||||||
|
grad_norm = 0.0
|
||||||
|
if info_dict['train_engine'] == "deepspeed":
|
||||||
|
info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
|
||||||
|
model.step()
|
||||||
|
grad_norm = model.get_global_grad_norm()
|
||||||
|
elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
|
||||||
|
# Use mixed precision training
|
||||||
|
if scaler is not None:
|
||||||
|
scaler.unscale_(optimizer)
|
||||||
|
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
||||||
|
# We don't check grad here since that if the gradient
|
||||||
|
# has inf/nan values, scaler.step will skip
|
||||||
|
# optimizer.step().
|
||||||
|
if torch.isfinite(grad_norm):
|
||||||
|
scaler.step(optimizer)
|
||||||
|
scaler.update()
|
||||||
|
else:
|
||||||
|
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
||||||
|
if torch.isfinite(grad_norm):
|
||||||
|
optimizer.step()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
scheduler.step()
|
||||||
|
info_dict["lr"] = optimizer.param_groups[0]['lr']
|
||||||
|
info_dict["grad_norm"] = grad_norm
|
||||||
|
return info_dict
|
||||||
|
|
||||||
|
|
||||||
|
def log_per_step(writer, info_dict):
|
||||||
|
tag = info_dict["tag"]
|
||||||
|
epoch = info_dict.get('epoch', 0)
|
||||||
|
step = info_dict["step"]
|
||||||
|
batch_idx = info_dict["batch_idx"]
|
||||||
|
loss_dict = info_dict['loss_dict']
|
||||||
|
rank = int(os.environ.get('RANK', 0))
|
||||||
|
|
||||||
|
# only rank 0 write to tensorboard to avoid multi-process write
|
||||||
|
if writer is not None:
|
||||||
|
if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \
|
||||||
|
(info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0):
|
||||||
|
for k in ['epoch', 'lr', 'grad_norm']:
|
||||||
|
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
|
||||||
|
for k, v in loss_dict.items():
|
||||||
|
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
|
||||||
|
|
||||||
|
# TRAIN & CV, Shell log (stdout)
|
||||||
|
if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0:
|
||||||
|
log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1)
|
||||||
|
for name, value in loss_dict.items():
|
||||||
|
log_str += '{} {:.6f} '.format(name, value)
|
||||||
|
if tag == "TRAIN":
|
||||||
|
log_str += 'lr {:.8f} grad_norm {:.6f}'.format(
|
||||||
|
info_dict["lr"], info_dict['grad_norm'])
|
||||||
|
log_str += ' rank {}'.format(rank)
|
||||||
|
logging.debug(log_str)
|
||||||
|
|
||||||
|
|
||||||
|
def log_per_save(writer, info_dict):
|
||||||
|
tag = info_dict["tag"]
|
||||||
|
epoch = info_dict["epoch"]
|
||||||
|
step = info_dict["step"]
|
||||||
|
loss_dict = info_dict["loss_dict"]
|
||||||
|
lr = info_dict['lr']
|
||||||
|
rank = int(os.environ.get('RANK', 0))
|
||||||
|
logging.info(
|
||||||
|
'Epoch {} Step {} CV info lr {} {} rank {}'.format(
|
||||||
|
epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()])))
|
||||||
|
|
||||||
|
if writer is not None:
|
||||||
|
for k in ['epoch', 'lr']:
|
||||||
|
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
|
||||||
|
for k, v in loss_dict.items():
|
||||||
|
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
|
||||||
226
examples/libritts/cosyvoice/conf/cosyvoice_dpo.yaml
Normal file
226
examples/libritts/cosyvoice/conf/cosyvoice_dpo.yaml
Normal file
@@ -0,0 +1,226 @@
|
|||||||
|
# set random seed, so that you may reproduce your result.
|
||||||
|
__set_seed1: !apply:random.seed [1986]
|
||||||
|
__set_seed2: !apply:numpy.random.seed [1986]
|
||||||
|
__set_seed3: !apply:torch.manual_seed [1986]
|
||||||
|
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
||||||
|
|
||||||
|
# fixed params
|
||||||
|
sample_rate: 24000 # 16000 for llm, 24000 for cfm
|
||||||
|
llm_input_size: 896
|
||||||
|
llm_output_size: 896
|
||||||
|
spk_embed_dim: 192
|
||||||
|
qwen_pretrain_path: 'CosyVoice2-0.5B/CosyVoice-BlankEN'
|
||||||
|
|
||||||
|
# model params
|
||||||
|
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
||||||
|
# for system/third_party class/function, we do not require this.
|
||||||
|
llm: !new:cosyvoice.llm.llm_dpo.Qwen2LM
|
||||||
|
llm_input_size: !ref <llm_input_size>
|
||||||
|
llm_output_size: !ref <llm_output_size>
|
||||||
|
speech_token_size: 6561
|
||||||
|
length_normalized_loss: True
|
||||||
|
lsm_weight: 0
|
||||||
|
dpo: True
|
||||||
|
llm: !new:cosyvoice.llm.llm.Qwen2Encoder
|
||||||
|
pretrain_path: !ref <qwen_pretrain_path>
|
||||||
|
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||||
|
top_p: 0.8
|
||||||
|
top_k: 25
|
||||||
|
win_size: 10
|
||||||
|
tau_r: 0.1
|
||||||
|
flow: !new:cosyvoice.flow.flow.CausalMaskedDiffWithXvec
|
||||||
|
input_size: 512
|
||||||
|
output_size: 80
|
||||||
|
spk_embed_dim: !ref <spk_embed_dim>
|
||||||
|
output_type: 'mel'
|
||||||
|
vocab_size: 6561
|
||||||
|
input_frame_rate: 25
|
||||||
|
only_mask_loss: True
|
||||||
|
token_mel_ratio: 2
|
||||||
|
pre_lookahead_len: 3
|
||||||
|
encoder: !new:cosyvoice.transformer.upsample_encoder.UpsampleConformerEncoder
|
||||||
|
output_size: 512
|
||||||
|
attention_heads: 8
|
||||||
|
linear_units: 2048
|
||||||
|
num_blocks: 6
|
||||||
|
dropout_rate: 0.1
|
||||||
|
positional_dropout_rate: 0.1
|
||||||
|
attention_dropout_rate: 0.1
|
||||||
|
normalize_before: True
|
||||||
|
input_layer: 'linear'
|
||||||
|
pos_enc_layer_type: 'rel_pos_espnet'
|
||||||
|
selfattention_layer_type: 'rel_selfattn'
|
||||||
|
input_size: 512
|
||||||
|
use_cnn_module: False
|
||||||
|
macaron_style: False
|
||||||
|
decoder: !new:cosyvoice.flow.flow_matching.CausalConditionalCFM
|
||||||
|
in_channels: 240
|
||||||
|
n_spks: 1
|
||||||
|
spk_emb_dim: 80
|
||||||
|
cfm_params: !new:omegaconf.DictConfig
|
||||||
|
content:
|
||||||
|
sigma_min: 1e-06
|
||||||
|
solver: 'euler'
|
||||||
|
t_scheduler: 'cosine'
|
||||||
|
training_cfg_rate: 0.2
|
||||||
|
inference_cfg_rate: 0.7
|
||||||
|
reg_loss_type: 'l1'
|
||||||
|
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
|
||||||
|
in_channels: 320
|
||||||
|
out_channels: 80
|
||||||
|
causal: True
|
||||||
|
channels: [256]
|
||||||
|
dropout: 0.0
|
||||||
|
attention_head_dim: 64
|
||||||
|
n_blocks: 4
|
||||||
|
num_mid_blocks: 12
|
||||||
|
num_heads: 8
|
||||||
|
act_fn: 'gelu'
|
||||||
|
|
||||||
|
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||||
|
in_channels: 80
|
||||||
|
base_channels: 512
|
||||||
|
nb_harmonics: 8
|
||||||
|
sampling_rate: !ref <sample_rate>
|
||||||
|
nsf_alpha: 0.1
|
||||||
|
nsf_sigma: 0.003
|
||||||
|
nsf_voiced_threshold: 10
|
||||||
|
upsample_rates: [8, 5, 3]
|
||||||
|
upsample_kernel_sizes: [16, 11, 7]
|
||||||
|
istft_params:
|
||||||
|
n_fft: 16
|
||||||
|
hop_len: 4
|
||||||
|
resblock_kernel_sizes: [3, 7, 11]
|
||||||
|
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||||
|
source_resblock_kernel_sizes: [7, 7, 11]
|
||||||
|
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||||
|
lrelu_slope: 0.1
|
||||||
|
audio_limit: 0.99
|
||||||
|
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
||||||
|
num_class: 1
|
||||||
|
in_channels: 80
|
||||||
|
cond_channels: 512
|
||||||
|
|
||||||
|
# gan related module
|
||||||
|
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
||||||
|
n_fft: 1024
|
||||||
|
num_mels: 80
|
||||||
|
sampling_rate: !ref <sample_rate>
|
||||||
|
hop_size: 256
|
||||||
|
win_size: 1024
|
||||||
|
fmin: 0
|
||||||
|
fmax: null
|
||||||
|
center: False
|
||||||
|
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
||||||
|
generator: !ref <hift>
|
||||||
|
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||||
|
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||||
|
mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
|
||||||
|
mel_spec_transform: [
|
||||||
|
!ref <mel_spec_transform1>
|
||||||
|
]
|
||||||
|
|
||||||
|
# processor functions
|
||||||
|
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||||
|
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
||||||
|
multilingual: True
|
||||||
|
num_languages: 100
|
||||||
|
language: 'en'
|
||||||
|
task: 'transcribe'
|
||||||
|
allowed_special: 'all'
|
||||||
|
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
||||||
|
get_tokenizer: !ref <get_tokenizer>
|
||||||
|
allowed_special: !ref <allowed_special>
|
||||||
|
filter: !name:cosyvoice.dataset.processor.filter
|
||||||
|
max_length: 40960
|
||||||
|
min_length: 0
|
||||||
|
token_max_length: 200
|
||||||
|
token_min_length: 1
|
||||||
|
resample: !name:cosyvoice.dataset.processor.resample
|
||||||
|
resample_rate: !ref <sample_rate>
|
||||||
|
truncate: !name:cosyvoice.dataset.processor.truncate
|
||||||
|
truncate_length: 24576 # must be a multiplier of hop_size
|
||||||
|
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||||
|
n_fft: 1024
|
||||||
|
num_mels: 80
|
||||||
|
sampling_rate: !ref <sample_rate>
|
||||||
|
hop_size: 256
|
||||||
|
win_size: 1024
|
||||||
|
fmin: 0
|
||||||
|
fmax: 8000
|
||||||
|
center: False
|
||||||
|
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||||
|
feat_extractor: !ref <feat_extractor>
|
||||||
|
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
||||||
|
sample_rate: !ref <sample_rate>
|
||||||
|
hop_size: 256
|
||||||
|
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
||||||
|
normalize: True
|
||||||
|
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
||||||
|
shuffle_size: 1000
|
||||||
|
sort: !name:cosyvoice.dataset.processor.sort
|
||||||
|
sort_size: 500 # sort_size should be less than shuffle_size
|
||||||
|
batch: !name:cosyvoice.dataset.processor.batch
|
||||||
|
batch_type: 'dynamic'
|
||||||
|
max_frames_in_batch: 2000 # change to 1400 in gan train on v100 16g
|
||||||
|
padding: !name:cosyvoice.dataset.processor.padding
|
||||||
|
use_spk_embedding: True # change to True during sft
|
||||||
|
dpo: True
|
||||||
|
|
||||||
|
# dataset processor pipeline
|
||||||
|
data_pipeline: [
|
||||||
|
!ref <parquet_opener>,
|
||||||
|
!ref <tokenize>,
|
||||||
|
!ref <filter>,
|
||||||
|
!ref <resample>,
|
||||||
|
!ref <compute_fbank>,
|
||||||
|
!ref <parse_embedding>,
|
||||||
|
!ref <shuffle>,
|
||||||
|
!ref <sort>,
|
||||||
|
!ref <batch>,
|
||||||
|
!ref <padding>,
|
||||||
|
]
|
||||||
|
data_pipeline_gan: [
|
||||||
|
!ref <parquet_opener>,
|
||||||
|
!ref <tokenize>,
|
||||||
|
!ref <filter>,
|
||||||
|
!ref <resample>,
|
||||||
|
!ref <truncate>,
|
||||||
|
!ref <compute_fbank>,
|
||||||
|
!ref <compute_f0>,
|
||||||
|
!ref <parse_embedding>,
|
||||||
|
!ref <shuffle>,
|
||||||
|
!ref <sort>,
|
||||||
|
!ref <batch>,
|
||||||
|
!ref <padding>,
|
||||||
|
]
|
||||||
|
|
||||||
|
# llm flow train conf
|
||||||
|
train_conf:
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.00001 # change to 1e-5 during sft
|
||||||
|
scheduler: warmuplr # change to constantlr during sft
|
||||||
|
scheduler_conf:
|
||||||
|
warmup_steps: 25000
|
||||||
|
max_epoch: 200
|
||||||
|
grad_clip: 5
|
||||||
|
accum_grad: 2
|
||||||
|
log_interval: 100
|
||||||
|
save_per_step: -1
|
||||||
|
|
||||||
|
# gan train conf
|
||||||
|
train_conf_gan:
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.0002 # use small lr for gan training
|
||||||
|
scheduler: constantlr
|
||||||
|
optim_d: adam
|
||||||
|
optim_conf_d:
|
||||||
|
lr: 0.0002 # use small lr for gan training
|
||||||
|
scheduler_d: constantlr
|
||||||
|
max_epoch: 200
|
||||||
|
grad_clip: 5
|
||||||
|
accum_grad: 1 # in gan training, accum_grad must be 1
|
||||||
|
log_interval: 100
|
||||||
|
save_per_step: -1
|
||||||
125
tools/make_parquet_list_dpo.py
Executable file
125
tools/make_parquet_list_dpo.py
Executable file
@@ -0,0 +1,125 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
from tqdm import tqdm
|
||||||
|
import pandas as pd
|
||||||
|
import multiprocessing
|
||||||
|
import time
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
|
||||||
|
start_time = time.time()
|
||||||
|
data_list = []
|
||||||
|
for utt in tqdm(utt_list):
|
||||||
|
data = open(utt2wav[utt], 'rb').read()
|
||||||
|
data_list.append(data)
|
||||||
|
wav_list = [utt2wav[utt] for utt in utt_list]
|
||||||
|
text_list = [utt2text[utt] for utt in utt_list]
|
||||||
|
spk_list = [utt2spk[utt] for utt in utt_list]
|
||||||
|
uttembedding_list = [utt2embedding[utt] for utt in utt_list]
|
||||||
|
spkembedding_list = [spk2embedding[utt2spk[utt]] for utt in utt_list]
|
||||||
|
speech_token_list = [utt2speech_token[utt] for utt in utt_list]
|
||||||
|
if utt2reject_speech_token:
|
||||||
|
reject_speech_token_list = [utt2reject_speech_token[utt] for utt in utt_list]
|
||||||
|
|
||||||
|
# 保存到parquet,utt2parquet_file,spk2parquet_file
|
||||||
|
df = pd.DataFrame()
|
||||||
|
df['utt'] = utt_list
|
||||||
|
df['wav'] = wav_list
|
||||||
|
df['audio_data'] = data_list
|
||||||
|
df['text'] = text_list
|
||||||
|
df['spk'] = spk_list
|
||||||
|
df['utt_embedding'] = uttembedding_list
|
||||||
|
df['spk_embedding'] = spkembedding_list
|
||||||
|
df['speech_token'] = speech_token_list
|
||||||
|
if utt2reject_speech_token:
|
||||||
|
df['reject_speech_token'] = reject_speech_token_list
|
||||||
|
df.to_parquet(parquet_file)
|
||||||
|
with open(utt2parquet_file, 'w') as f:
|
||||||
|
json.dump({k: parquet_file for k in utt_list}, f, ensure_ascii=False, indent=2)
|
||||||
|
with open(spk2parquet_file, 'w') as f:
|
||||||
|
json.dump({k: parquet_file for k in list(set(spk_list))}, f, ensure_ascii=False, indent=2)
|
||||||
|
logging.info('spend time {}'.format(time.time() - start_time))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--num_utts_per_parquet',
|
||||||
|
type=int,
|
||||||
|
default=1000,
|
||||||
|
help='num utts per parquet')
|
||||||
|
parser.add_argument('--num_processes',
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help='num processes for make parquets')
|
||||||
|
parser.add_argument('--src_dir',
|
||||||
|
type=str)
|
||||||
|
parser.add_argument('--des_dir',
|
||||||
|
type=str)
|
||||||
|
parser.add_argument('--dpo',
|
||||||
|
action='store_true',
|
||||||
|
default=False,
|
||||||
|
help='Use Direct Preference Optimization')
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
utt2wav, utt2text, utt2spk = {}, {}, {}
|
||||||
|
with open('{}/wav.scp'.format(args.src_dir)) as f:
|
||||||
|
for l in f:
|
||||||
|
l = l.replace('\n', '').split()
|
||||||
|
utt2wav[l[0]] = l[1]
|
||||||
|
with open('{}/text'.format(args.src_dir)) as f:
|
||||||
|
for l in f:
|
||||||
|
l = l.replace('\n', '').split()
|
||||||
|
utt2text[l[0]] = ' '.join(l[1:])
|
||||||
|
with open('{}/utt2spk'.format(args.src_dir)) as f:
|
||||||
|
for l in f:
|
||||||
|
l = l.replace('\n', '').split()
|
||||||
|
utt2spk[l[0]] = l[1]
|
||||||
|
utt2embedding = torch.load('{}/utt2embedding.pt'.format(args.src_dir))
|
||||||
|
spk2embedding = torch.load('{}/spk2embedding.pt'.format(args.src_dir))
|
||||||
|
utt2speech_token = torch.load('{}/utt2speech_token.pt'.format(args.src_dir))
|
||||||
|
if args.dpo:
|
||||||
|
utt2reject_speech_token = torch.load('{}/utt2reject_speech_token.pt'.format(args.src_dir))
|
||||||
|
else:
|
||||||
|
utt2reject_speech_token = None
|
||||||
|
utts = list(utt2wav.keys())
|
||||||
|
|
||||||
|
# Using process pool to speedup
|
||||||
|
pool = multiprocessing.Pool(processes=args.num_processes)
|
||||||
|
parquet_list, utt2parquet_list, spk2parquet_list = [], [], []
|
||||||
|
for i, j in enumerate(range(0, len(utts), args.num_utts_per_parquet)):
|
||||||
|
parquet_file = os.path.join(args.des_dir, 'parquet_{:09d}.tar'.format(i))
|
||||||
|
utt2parquet_file = os.path.join(args.des_dir, 'utt2parquet_{:09d}.json'.format(i))
|
||||||
|
spk2parquet_file = os.path.join(args.des_dir, 'spk2parquet_{:09d}.json'.format(i))
|
||||||
|
parquet_list.append(parquet_file)
|
||||||
|
utt2parquet_list.append(utt2parquet_file)
|
||||||
|
spk2parquet_list.append(spk2parquet_file)
|
||||||
|
pool.apply_async(job, (utts[j: j + args.num_utts_per_parquet], parquet_file, utt2parquet_file, spk2parquet_file))
|
||||||
|
pool.close()
|
||||||
|
pool.join()
|
||||||
|
|
||||||
|
with open('{}/data.list'.format(args.des_dir), 'w', encoding='utf8') as f1, \
|
||||||
|
open('{}/utt2data.list'.format(args.des_dir), 'w', encoding='utf8') as f2, \
|
||||||
|
open('{}/spk2data.list'.format(args.des_dir), 'w', encoding='utf8') as f3:
|
||||||
|
for name in parquet_list:
|
||||||
|
f1.write(name + '\n')
|
||||||
|
for name in utt2parquet_list:
|
||||||
|
f2.write(name + '\n')
|
||||||
|
for name in spk2parquet_list:
|
||||||
|
f3.write(name + '\n')
|
||||||
Reference in New Issue
Block a user