mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
feat: Support DPO
This commit is contained in:
committed by
lyuxiang.lx
parent
3770c1c8b1
commit
6d876f573c
556
cosyvoice/llm/llm_dpo.py
Normal file
556
cosyvoice/llm/llm_dpo.py
Normal file
@@ -0,0 +1,556 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Dict, Optional, Callable, List, Generator
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from transformers import Qwen2ForCausalLM
|
||||
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
||||
from cosyvoice.utils.common import IGNORE_ID
|
||||
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
||||
from cosyvoice.utils.common import th_accuracy
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
from cosyvoice.utils.mask import make_pad_mask
|
||||
|
||||
|
||||
class TransformerLM(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
text_encoder_input_size: int,
|
||||
llm_input_size: int,
|
||||
llm_output_size: int,
|
||||
text_token_size: int,
|
||||
speech_token_size: int,
|
||||
text_encoder: torch.nn.Module,
|
||||
llm: torch.nn.Module,
|
||||
sampling: Callable,
|
||||
length_normalized_loss: bool = True,
|
||||
lsm_weight: float = 0.0,
|
||||
spk_embed_dim: int = 192,
|
||||
):
|
||||
super().__init__()
|
||||
self.llm_input_size = llm_input_size
|
||||
self.speech_token_size = speech_token_size
|
||||
# 1. build text token inputs related modules
|
||||
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
|
||||
self.text_encoder = text_encoder
|
||||
self.text_encoder_affine_layer = nn.Linear(
|
||||
self.text_encoder.output_size(),
|
||||
llm_input_size
|
||||
)
|
||||
|
||||
# 2. build speech token language model related modules
|
||||
self.sos_eos = 0
|
||||
self.task_id = 1
|
||||
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
||||
self.llm = llm
|
||||
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
|
||||
self.criterion_ce = LabelSmoothingLoss(
|
||||
size=speech_token_size + 1,
|
||||
padding_idx=IGNORE_ID,
|
||||
smoothing=lsm_weight,
|
||||
normalize_length=length_normalized_loss,
|
||||
)
|
||||
|
||||
# 3. [Optional] build speech token related modules
|
||||
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
|
||||
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
|
||||
|
||||
# 4. sampling method
|
||||
self.sampling = sampling
|
||||
|
||||
def encode(
|
||||
self,
|
||||
text: torch.Tensor,
|
||||
text_lengths: torch.Tensor,
|
||||
):
|
||||
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
|
||||
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
|
||||
encoder_out = self.text_encoder_affine_layer(encoder_out)
|
||||
return encoder_out, encoder_out_lens
|
||||
|
||||
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
||||
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
||||
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
||||
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
|
||||
for i in range(len(text_token))]
|
||||
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
||||
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
||||
return lm_input, lm_input_len
|
||||
|
||||
def forward(
|
||||
self,
|
||||
batch: dict,
|
||||
device: torch.device,
|
||||
) -> Dict[str, Optional[torch.Tensor]]:
|
||||
"""
|
||||
Args:
|
||||
text: (B, L, D)
|
||||
text_lengths: (B,)
|
||||
audio: (B, T, N) or (B, T)
|
||||
audio_lengths: (B,)
|
||||
"""
|
||||
text_token = batch['text_token'].to(device)
|
||||
text_token_len = batch['text_token_len'].to(device)
|
||||
speech_token = batch['speech_token'].to(device)
|
||||
speech_token_len = batch['speech_token_len'].to(device)
|
||||
embedding = batch['embedding'].to(device)
|
||||
|
||||
# 1. prepare llm_target
|
||||
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
||||
[self.speech_token_size]) for i in range(text_token.size(0))]
|
||||
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
||||
|
||||
# 1. encode text_token
|
||||
text_token = self.text_embedding(text_token)
|
||||
text_token, text_token_len = self.encode(text_token, text_token_len)
|
||||
|
||||
# 2. embedding projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
embedding = embedding.unsqueeze(1)
|
||||
|
||||
# 3. eos and task_id
|
||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||
|
||||
# 4. encode speech_token
|
||||
speech_token = self.speech_embedding(speech_token)
|
||||
|
||||
# 5. unpad and pad
|
||||
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
|
||||
task_id_emb, speech_token, speech_token_len)
|
||||
|
||||
# 6. run lm forward
|
||||
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
||||
logits = self.llm_decoder(lm_output)
|
||||
loss = self.criterion_ce(logits, lm_target)
|
||||
acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
|
||||
return {'loss': loss, 'acc': acc}
|
||||
|
||||
def sampling_ids(
|
||||
self,
|
||||
weighted_scores: torch.Tensor,
|
||||
decoded_tokens: List,
|
||||
sampling: int,
|
||||
ignore_eos: bool = True,
|
||||
):
|
||||
num_trials, max_trials = 0, 100
|
||||
while True:
|
||||
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
|
||||
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
||||
break
|
||||
num_trials += 1
|
||||
if num_trials > max_trials:
|
||||
raise RuntimeError('sampling reaches max_trials {} and still get eos when ignore_eos is True, check your input!'.format(max_trials))
|
||||
return top_ids
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(
|
||||
self,
|
||||
text: torch.Tensor,
|
||||
text_len: torch.Tensor,
|
||||
prompt_text: torch.Tensor,
|
||||
prompt_text_len: torch.Tensor,
|
||||
prompt_speech_token: torch.Tensor,
|
||||
prompt_speech_token_len: torch.Tensor,
|
||||
embedding: torch.Tensor,
|
||||
sampling: int = 25,
|
||||
max_token_text_ratio: float = 20,
|
||||
min_token_text_ratio: float = 2,
|
||||
) -> Generator[torch.Tensor, None, None]:
|
||||
if self.fp16 is True:
|
||||
embedding = embedding.half()
|
||||
|
||||
device = text.device
|
||||
text = torch.concat([prompt_text, text], dim=1)
|
||||
text_len += prompt_text_len
|
||||
text = self.text_embedding(text)
|
||||
|
||||
# 1. encode text
|
||||
text, text_len = self.encode(text, text_len)
|
||||
|
||||
# 2. encode embedding
|
||||
if embedding.shape[0] != 0:
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
embedding = embedding.unsqueeze(dim=1)
|
||||
else:
|
||||
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)
|
||||
|
||||
# 3. concat llm_input
|
||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||
if prompt_speech_token_len != 0:
|
||||
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||
else:
|
||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||
|
||||
# 4. cal min/max_length
|
||||
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
||||
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
||||
|
||||
# 5. step by step decode
|
||||
out_tokens = []
|
||||
offset = 0
|
||||
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
||||
for i in range(max_len):
|
||||
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1,
|
||||
att_cache=att_cache, cnn_cache=cnn_cache,
|
||||
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
|
||||
device=lm_input.device)).to(torch.bool))
|
||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||
# force continue decode first token
|
||||
if i == 0:
|
||||
logp[:, self.speech_token_size] = -float('inf')
|
||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
||||
if top_ids == self.speech_token_size:
|
||||
break
|
||||
# in stream mode, yield token one by one
|
||||
yield top_ids
|
||||
out_tokens.append(top_ids)
|
||||
offset += lm_input.size(1)
|
||||
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||
|
||||
|
||||
class Qwen2Encoder(torch.nn.Module):
|
||||
def __init__(self, pretrain_path):
|
||||
super().__init__()
|
||||
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
|
||||
|
||||
def forward_one_step(self, xs, masks, cache=None):
|
||||
input_masks = masks[:, -1, :]
|
||||
outs = self.model(
|
||||
inputs_embeds=xs,
|
||||
attention_mask=input_masks,
|
||||
output_hidden_states=True,
|
||||
return_dict=True,
|
||||
use_cache=True,
|
||||
past_key_values=cache,
|
||||
)
|
||||
xs = outs.hidden_states[-1]
|
||||
new_cache = outs.past_key_values
|
||||
return xs, new_cache
|
||||
|
||||
|
||||
class Qwen2LM(TransformerLM):
|
||||
def __init__(
|
||||
self,
|
||||
llm_input_size: int,
|
||||
llm_output_size: int,
|
||||
speech_token_size: int,
|
||||
llm: torch.nn.Module,
|
||||
sampling: Callable,
|
||||
length_normalized_loss: bool = True,
|
||||
lsm_weight: float = 0.0,
|
||||
mix_ratio: List[int] = [5, 15],
|
||||
dpo: bool = False,
|
||||
):
|
||||
torch.nn.Module.__init__(self)
|
||||
self.llm_input_size = llm_input_size
|
||||
self.llm_output_size = llm_output_size
|
||||
self.speech_token_size = speech_token_size
|
||||
|
||||
# 2. build speech token language model related modules
|
||||
self.sos_eos = 0
|
||||
self.task_id = 1
|
||||
self.fill_token = 2
|
||||
|
||||
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
||||
self.llm = llm
|
||||
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
|
||||
self.criterion_ce = LabelSmoothingLoss(
|
||||
size=speech_token_size + 3,
|
||||
padding_idx=IGNORE_ID,
|
||||
smoothing=lsm_weight,
|
||||
normalize_length=length_normalized_loss,
|
||||
)
|
||||
|
||||
# 3. [Optional] build speech token related modules
|
||||
self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
|
||||
|
||||
# 4. sampling method
|
||||
self.sampling = sampling
|
||||
self.mix_ratio = mix_ratio
|
||||
|
||||
# 5. [Optional] set dpo
|
||||
self.dpo = dpo
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
batch: dict,
|
||||
device: torch.device,
|
||||
) -> Dict[str, Optional[torch.Tensor]]:
|
||||
text_token = batch['text_token'].to(device)
|
||||
text_token_len = batch['text_token_len'].to(device)
|
||||
speech_token = batch['speech_token'].to(device)
|
||||
speech_token_len = batch['speech_token_len'].to(device)
|
||||
if self.dpo:
|
||||
reject_speech_token = batch['reject_speech_token'].to(device)
|
||||
reject_speech_token_len = batch['reject_speech_token_len'].to(device)
|
||||
# 1. prepare llm_target
|
||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||
target_ids = [torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
||||
[self.speech_token_size]) for i in range(text_token.size(0))]
|
||||
if self.dpo:
|
||||
reject_target_ids = [torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + reject_speech_token[i, :reject_speech_token_len[i]].tolist() +
|
||||
[self.speech_token_size]) for i in range(text_token.size(0))]
|
||||
target_ids.extend(reject_target_ids)
|
||||
target_ids = pad_sequence(target_ids, batch_first=True, padding_value=IGNORE_ID).to(device)
|
||||
|
||||
# 2. speech token projection
|
||||
speech_emb = self.speech_embedding(speech_token)
|
||||
if self.dpo:
|
||||
reject_speech_emb = self.speech_embedding(reject_speech_token)
|
||||
|
||||
# 3. text token projection
|
||||
text_token_lst = unpad_sequence(text_token, text_token_len, batch_first=True)
|
||||
text_emb = [self.llm.model.model.embed_tokens(y) for y in text_token_lst]
|
||||
|
||||
# 4. prepare llm_input
|
||||
speech_emb = unpad_sequence(speech_emb, speech_token_len.cpu(), batch_first=True)
|
||||
input_emb = [torch.concat([sos_eos_emb.squeeze(dim=0), text_emb[i], task_id_emb.squeeze(dim=0), speech_emb[i]], dim=0)
|
||||
for i in range(len(text_emb))]
|
||||
if self.dpo:
|
||||
reject_speech_emb = unpad_sequence(reject_speech_emb, reject_speech_token_len.cpu(), batch_first=True)
|
||||
reject_input_emb = [torch.concat([sos_eos_emb.squeeze(dim=0), text_emb[i], task_id_emb.squeeze(dim=0), reject_speech_emb[i]], dim=0)
|
||||
for i in range(len(text_emb))]
|
||||
input_emb.extend(reject_input_emb)
|
||||
input_emb_lengths = torch.tensor([i.size(0) for i in input_emb], dtype=torch.int32).to(device)
|
||||
input_emb = pad_sequence(input_emb, batch_first=True, padding_value=IGNORE_ID).to(device)
|
||||
|
||||
attention_mask = ~make_pad_mask(input_emb_lengths)
|
||||
|
||||
result = self.llm.model(
|
||||
inputs_embeds=input_emb,
|
||||
attention_mask=attention_mask,
|
||||
return_dict=True
|
||||
)
|
||||
hidden_states = result.hidden_states
|
||||
logits = self.llm_decoder(hidden_states[-1])
|
||||
loss = self.criterion_ce(logits[: speech_token.shape[0]], target_ids[: speech_token.shape[0]])
|
||||
acc = th_accuracy(
|
||||
logits[: speech_token.shape[0]].view(-1, self.speech_token_size + 3),
|
||||
target_ids[: speech_token.shape[0]],
|
||||
ignore_label=IGNORE_ID,
|
||||
)
|
||||
if not self.dpo:
|
||||
return {
|
||||
"loss": loss,
|
||||
"acc": acc,
|
||||
}
|
||||
else:
|
||||
all_logps_sum, all_logps_mean = self.get_batch_logps(
|
||||
logits, target_ids, attention_mask, text_token_len, average_log_prob=False, ignore_id=IGNORE_ID
|
||||
)
|
||||
chosen_logps = all_logps_sum[: speech_token.shape[0]]
|
||||
rejected_logps = all_logps_sum[speech_token.shape[0]:]
|
||||
return {
|
||||
"loss": loss,
|
||||
"acc": acc,
|
||||
"chosen_logps": chosen_logps,
|
||||
"rejected_logps": rejected_logps
|
||||
}
|
||||
|
||||
|
||||
def get_batch_logps(
|
||||
self,
|
||||
logits: torch.FloatTensor,
|
||||
labels: torch.LongTensor,
|
||||
attention_mask,
|
||||
prompt_token_lens,
|
||||
average_log_prob: bool = False,
|
||||
ignore_id: int = -1,
|
||||
) -> torch.FloatTensor:
|
||||
"""Compute the log probabilities of the given labels under the given logits.
|
||||
|
||||
Args:
|
||||
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size)
|
||||
labels: Labels for which to compute the log probabilities. Label tokens with a value of -100 are ignored. Shape: (batch_size, sequence_length)
|
||||
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens.
|
||||
|
||||
Returns:
|
||||
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits.
|
||||
"""
|
||||
assert average_log_prob == False
|
||||
assert logits.shape[:-1] == labels.shape
|
||||
labels = labels[:, 1:].clone()
|
||||
logits = logits[:, :-1, :]
|
||||
loss_masks = attention_mask.clone().bool()
|
||||
# mask prompts
|
||||
for mask, text_token_len in zip(loss_masks, prompt_token_lens):
|
||||
mask[:text_token_len + 1] = False
|
||||
loss_masks = loss_masks[:, 1:]
|
||||
labels[loss_masks == False] = 0
|
||||
# dummy token; we'll ignore the losses on these tokens later
|
||||
ignore = labels == ignore_id
|
||||
labels = labels.masked_fill(ignore, 0) # avoid -1 index
|
||||
per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2) # (bs, time,)
|
||||
logprobs_sums = (per_token_logps * loss_masks).sum(-1)
|
||||
logprobs_means = (per_token_logps * loss_masks).sum(-1) / loss_masks.sum(-1)
|
||||
return logprobs_sums, logprobs_means
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(
|
||||
self,
|
||||
text: torch.Tensor,
|
||||
text_len: torch.Tensor,
|
||||
prompt_text: torch.Tensor,
|
||||
prompt_text_len: torch.Tensor,
|
||||
prompt_speech_token: torch.Tensor,
|
||||
prompt_speech_token_len: torch.Tensor,
|
||||
embedding: torch.Tensor,
|
||||
sampling: int = 25,
|
||||
max_token_text_ratio: float = 20,
|
||||
min_token_text_ratio: float = 2,
|
||||
) -> Generator[torch.Tensor, None, None]:
|
||||
device = text.device
|
||||
text = torch.concat([prompt_text, text], dim=1)
|
||||
text_len += prompt_text_len
|
||||
text = self.llm.model.model.embed_tokens(text)
|
||||
|
||||
# 3. concat llm_input
|
||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||
if prompt_speech_token_len != 0:
|
||||
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||
else:
|
||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||
lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||
|
||||
# 4. cal min/max_length
|
||||
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
||||
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
||||
|
||||
# 5. step by step decode
|
||||
out_tokens = []
|
||||
cache = None
|
||||
for i in range(max_len):
|
||||
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
|
||||
cache=cache)
|
||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
||||
if top_ids == self.speech_token_size:
|
||||
break
|
||||
if top_ids > self.speech_token_size:
|
||||
continue
|
||||
# in stream mode, yield token one by one
|
||||
yield top_ids
|
||||
out_tokens.append(top_ids)
|
||||
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference_bistream(
|
||||
self,
|
||||
text: Generator,
|
||||
prompt_text: torch.Tensor,
|
||||
prompt_text_len: torch.Tensor,
|
||||
prompt_speech_token: torch.Tensor,
|
||||
prompt_speech_token_len: torch.Tensor,
|
||||
embedding: torch.Tensor,
|
||||
sampling: int = 25,
|
||||
max_token_text_ratio: float = 20,
|
||||
min_token_text_ratio: float = 2,
|
||||
) -> Generator[torch.Tensor, None, None]:
|
||||
|
||||
device = prompt_text.device
|
||||
# 1. prepare input
|
||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||
if prompt_speech_token_len != 0:
|
||||
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||
else:
|
||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
|
||||
lm_input = torch.concat([sos_eos_emb], dim=1)
|
||||
|
||||
# 2. iterate text
|
||||
out_tokens = []
|
||||
cache = None
|
||||
# NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
|
||||
text_cache = self.llm.model.model.embed_tokens(prompt_text)
|
||||
next_fill_index = -1
|
||||
for this_text in text:
|
||||
text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
|
||||
# prompt_speech_token_emb not empty, try append to lm_input
|
||||
while prompt_speech_token_emb.size(1) != 0:
|
||||
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||
lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]]
|
||||
logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1)))
|
||||
lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1)
|
||||
text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:]
|
||||
else:
|
||||
logging.info('not enough text token to decode, wait for more')
|
||||
break
|
||||
# no prompt_speech_token_emb remain, can decode some speech token
|
||||
if prompt_speech_token_emb.size(1) == 0:
|
||||
if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
|
||||
logging.info('get fill token, need to append more text token')
|
||||
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||
lm_input_text = text_cache[:, :self.mix_ratio[0]]
|
||||
logging.info('append {} text token'.format(lm_input_text.size(1)))
|
||||
if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
|
||||
lm_input = lm_input_text
|
||||
else:
|
||||
lm_input = torch.concat([lm_input, lm_input_text], dim=1)
|
||||
text_cache = text_cache[:, self.mix_ratio[0]:]
|
||||
else:
|
||||
logging.info('not enough text token to decode, wait for more')
|
||||
continue
|
||||
while True:
|
||||
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
||||
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
||||
cache=cache)
|
||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
||||
top_ids = self.speech_token_size + 2
|
||||
next_fill_index += (self.mix_ratio[1] + 1)
|
||||
else:
|
||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item()
|
||||
if top_ids == self.speech_token_size + 2:
|
||||
next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
|
||||
logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
|
||||
out_tokens.append(top_ids)
|
||||
if top_ids >= self.speech_token_size:
|
||||
if top_ids == self.speech_token_size + 2:
|
||||
break
|
||||
else:
|
||||
raise ValueError('should not get token {}'.format(top_ids))
|
||||
yield top_ids
|
||||
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||
|
||||
# 3. final decode
|
||||
lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1)
|
||||
logging.info('no more text token, decode until met eos')
|
||||
while True:
|
||||
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
||||
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
||||
cache=cache)
|
||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item()
|
||||
out_tokens.append(top_ids)
|
||||
if top_ids >= self.speech_token_size:
|
||||
if top_ids == self.speech_token_size:
|
||||
break
|
||||
else:
|
||||
raise ValueError('should not get token {}'.format(top_ids))
|
||||
# in stream mode, yield token one by one
|
||||
yield top_ids
|
||||
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||
Reference in New Issue
Block a user