mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
add prompt audio cache
This commit is contained in:
@@ -43,6 +43,7 @@ import torchaudio
|
||||
|
||||
from matcha.utils.audio import mel_spectrogram
|
||||
|
||||
ORIGINAL_VOCAB_SIZE = 151663
|
||||
torch.set_num_threads(1)
|
||||
|
||||
|
||||
@@ -81,6 +82,12 @@ class TritonPythonModel:
|
||||
self.flow_pre_lookahead_len = 3
|
||||
self.token_hop_len = 15
|
||||
|
||||
spk_info_path = os.path.join(model_params["model_dir"], "spk2info.pt")
|
||||
if not os.path.exists(spk_info_path):
|
||||
raise ValueError(f"spk2info.pt not found in {model_params['model_dir']}")
|
||||
spk_info = torch.load(spk_info_path, map_location="cpu", weights_only=False)
|
||||
self.default_spk_info = spk_info["001"]
|
||||
|
||||
def forward_llm(self, input_ids):
|
||||
"""
|
||||
Prepares the response from the language model based on the provided
|
||||
@@ -220,11 +227,11 @@ class TritonPythonModel:
|
||||
|
||||
def forward_token2wav(
|
||||
self,
|
||||
prompt_speech_tokens: torch.Tensor,
|
||||
prompt_speech_feat: torch.Tensor,
|
||||
prompt_spk_embedding: torch.Tensor,
|
||||
target_speech_tokens: torch.Tensor,
|
||||
request_id: str,
|
||||
prompt_speech_tokens: torch.Tensor = None,
|
||||
prompt_speech_feat: torch.Tensor = None,
|
||||
prompt_spk_embedding: torch.Tensor = None,
|
||||
token_offset: int = None,
|
||||
finalize: bool = None) -> torch.Tensor:
|
||||
"""Forward pass through the vocoder component.
|
||||
@@ -238,12 +245,9 @@ class TritonPythonModel:
|
||||
Returns:
|
||||
Generated waveform tensor
|
||||
"""
|
||||
prompt_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_tokens", to_dlpack(prompt_speech_tokens))
|
||||
prompt_speech_feat_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_feat", to_dlpack(prompt_speech_feat))
|
||||
prompt_spk_embedding_tensor = pb_utils.Tensor.from_dlpack("prompt_spk_embedding", to_dlpack(prompt_spk_embedding))
|
||||
target_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("target_speech_tokens", to_dlpack(target_speech_tokens))
|
||||
|
||||
inputs_tensor = [prompt_speech_tokens_tensor, prompt_speech_feat_tensor, prompt_spk_embedding_tensor, target_speech_tokens_tensor]
|
||||
inputs_tensor = [target_speech_tokens_tensor]
|
||||
|
||||
if token_offset is not None:
|
||||
assert finalize is not None
|
||||
@@ -252,6 +256,13 @@ class TritonPythonModel:
|
||||
inputs_tensor.append(token_offset_tensor)
|
||||
inputs_tensor.append(finalize_tensor)
|
||||
|
||||
if prompt_spk_embedding is not None:
|
||||
assert prompt_speech_feat is not None
|
||||
prompt_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_tokens", to_dlpack(prompt_speech_tokens))
|
||||
prompt_speech_feat_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_feat", to_dlpack(prompt_speech_feat))
|
||||
prompt_spk_embedding_tensor = pb_utils.Tensor.from_dlpack("prompt_spk_embedding", to_dlpack(prompt_spk_embedding))
|
||||
inputs_tensor.extend([prompt_speech_tokens_tensor, prompt_speech_feat_tensor, prompt_spk_embedding_tensor])
|
||||
|
||||
# Create and execute inference request
|
||||
inference_request = pb_utils.InferenceRequest(
|
||||
model_name='token2wav',
|
||||
@@ -318,25 +329,30 @@ class TritonPythonModel:
|
||||
request_id = request.request_id()
|
||||
# Extract input tensors
|
||||
wav = pb_utils.get_input_tensor_by_name(request, "reference_wav")
|
||||
wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
|
||||
|
||||
# Process reference audio through audio tokenizer
|
||||
if wav is not None:
|
||||
wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
|
||||
prompt_speech_tokens = self.forward_audio_tokenizer(wav, wav_len)
|
||||
prompt_speech_tokens = prompt_speech_tokens.unsqueeze(0)
|
||||
|
||||
prompt_speech_tokens = self.forward_audio_tokenizer(wav, wav_len)
|
||||
prompt_speech_tokens = prompt_speech_tokens.unsqueeze(0)
|
||||
wav_tensor = wav.as_numpy()
|
||||
wav_tensor = torch.from_numpy(wav_tensor)[:, :wav_len.as_numpy()[0][0]]
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=24000)(wav_tensor)
|
||||
speech_feat = self._extract_speech_feat(prompt_speech_resample)
|
||||
token_len = min(int(speech_feat.shape[1] / 2), prompt_speech_tokens.shape[-1])
|
||||
prompt_speech_feat = speech_feat[:, :2 * token_len].contiguous().half()
|
||||
prompt_speech_tokens = prompt_speech_tokens[:, :token_len].contiguous()
|
||||
|
||||
wav_tensor = wav.as_numpy()
|
||||
wav_tensor = torch.from_numpy(wav_tensor)[:, :wav_len.as_numpy()[0][0]]
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=24000)(wav_tensor)
|
||||
speech_feat = self._extract_speech_feat(prompt_speech_resample)
|
||||
token_len = min(int(speech_feat.shape[1] / 2), prompt_speech_tokens.shape[-1])
|
||||
prompt_speech_feat = speech_feat[:, :2 * token_len].contiguous().half()
|
||||
prompt_speech_tokens = prompt_speech_tokens[:, :token_len].contiguous()
|
||||
|
||||
flow_prompt_speech_token_len = prompt_speech_tokens.shape[-1]
|
||||
|
||||
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
|
||||
reference_text = reference_text[0][0].decode('utf-8')
|
||||
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
|
||||
reference_text = reference_text[0][0].decode('utf-8')
|
||||
prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
|
||||
else:
|
||||
# using pre-cached reference text
|
||||
reference_text = self.default_spk_info["prompt_text"]
|
||||
prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
|
||||
prompt_speech_feat = None
|
||||
prompt_spk_embedding = None
|
||||
|
||||
target_text = pb_utils.get_input_tensor_by_name(request, "target_text").as_numpy()
|
||||
target_text = target_text[0][0].decode('utf-8')
|
||||
@@ -350,7 +366,6 @@ class TritonPythonModel:
|
||||
|
||||
# Generate semantic tokens with LLM
|
||||
generated_ids_iter = self.forward_llm(input_ids)
|
||||
prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
|
||||
|
||||
if self.decoupled:
|
||||
response_sender = request.get_response_sender()
|
||||
@@ -380,8 +395,9 @@ class TritonPythonModel:
|
||||
this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
|
||||
sub_tts_speech = self.forward_token2wav(
|
||||
prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding,
|
||||
this_tts_speech_token, request_id, token_offset, False)
|
||||
this_tts_speech_token, request_id, prompt_speech_tokens,
|
||||
prompt_speech_feat, prompt_spk_embedding, token_offset, False
|
||||
)
|
||||
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||
@@ -414,7 +430,7 @@ class TritonPythonModel:
|
||||
time.sleep(0.02)
|
||||
|
||||
this_tts_speech_token = torch.tensor(semantic_token_ids_arr).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
sub_tts_speech = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, this_tts_speech_token, request_id, token_offset, True)
|
||||
sub_tts_speech = self.forward_token2wav(this_tts_speech_token, request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, token_offset, True)
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||
response_sender.send(inference_response)
|
||||
@@ -428,7 +444,7 @@ class TritonPythonModel:
|
||||
if generated_ids is None or len(generated_ids) == 0:
|
||||
raise pb_utils.TritonModelException("Generated IDs is None or empty")
|
||||
|
||||
audio = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, generated_ids, request_id)
|
||||
audio = self.forward_token2wav(generated_ids, request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding)
|
||||
|
||||
# Prepare response
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio))
|
||||
|
||||
@@ -37,16 +37,19 @@ input [
|
||||
name: "reference_wav"
|
||||
data_type: TYPE_FP32
|
||||
dims: [-1]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "reference_wav_len"
|
||||
data_type: TYPE_INT32
|
||||
dims: [1]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "reference_text"
|
||||
data_type: TYPE_STRING
|
||||
dims: [1]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "target_text"
|
||||
|
||||
Reference in New Issue
Block a user