This commit is contained in:
root
2025-07-29 08:40:51 +00:00
parent d1c354eac7
commit 62d082634e
7 changed files with 71 additions and 68 deletions

View File

@@ -21,6 +21,7 @@ import torch
from safetensors import safe_open
from transformers import AutoTokenizer
def get_args():
parser = ArgumentParser()
@@ -39,6 +40,7 @@ def get_args():
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
@@ -67,4 +69,3 @@ if __name__ == "__main__":
hf_tensors["llm.model.lm_head.weight"] = hf_tensors["llm.model.model.embed_tokens.weight"]
torch.save(hf_tensors, args.output_path)

View File

@@ -105,6 +105,7 @@ def extract_speech_ids(speech_tokens_str):
print(f"Unexpected token: {token_str}")
return speech_ids
def convert_cosy2_tokens_to_speech_id_str(cosy2_tokens):
"""Convert CosyVoice2 tokens to speech IDs string like <|s_23456|>"""
speech_id_str = ""
@@ -182,14 +183,13 @@ def get_args():
return args
def data_collator(batch, tokenizer, s3_tokenizer):
"""Simplified data collator for batch_size=1 processing"""
target_sample_rate = 16000 # CosyVoice2 uses 16kHz for prompt audio
device = s3_tokenizer.device if s3_tokenizer is not None else torch.device("cpu")
input_ids_list, prompt_audio_list, prompt_text_list = [], [], []
mels, prompt_audio_cosy2tokens_list = [], []
for i, item in enumerate(batch):
for item in batch:
prompt_text, target_text = (
item["prompt_text"],
item["target_text"],
@@ -227,7 +227,7 @@ def data_collator(batch, tokenizer, s3_tokenizer):
codes, codes_lens = s3_tokenizer.quantize(mels.to(device), mels_lens.to(device))
for i in range(len(codes)):
prompt_audio_cosy2tokens_list.append(codes[i, :codes_lens[i].item()])
for i, prompt_audio_cosy2tokens in enumerate(prompt_audio_cosy2tokens_list):
for prompt_audio_cosy2tokens in prompt_audio_cosy2tokens_list:
prompt_audio_cosy2_id_str = convert_cosy2_tokens_to_speech_id_str(prompt_audio_cosy2tokens)
# Create chat template for LLM generation
chat = [
@@ -244,7 +244,6 @@ def data_collator(batch, tokenizer, s3_tokenizer):
)
input_ids_list.append(input_ids.squeeze(0))
# For batch_size=1, no need to pad
if len(input_ids_list) == 1:
input_ids = input_ids_list[0].unsqueeze(0)
@@ -384,7 +383,6 @@ def main():
else:
print(f"Warning: No prompt audio available for sample {batch['ids'][i]}, skipping")
if rank == 0:
progress_bar.update(world_size * len(batch["ids"]))

View File

@@ -23,8 +23,6 @@ import datasets
from verl.utils.hdfs_io import copy, makedirs
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--train_file", required=True, help="Path to training JSON/JSONL file")

View File

@@ -31,7 +31,6 @@ import torch
sys.path.append("/workspace/CosyVoice/third_party/Matcha-TTS")
def get_args():
parser = ArgumentParser()
@@ -96,17 +95,20 @@ if __name__ == "__main__":
# set the weight and bias of the new lm_head to 0
new_lm_head.weight.data.zero_()
new_lm_head.bias.data.zero_()
new_lm_head.weight[original_tokenizer_vocab_size:original_tokenizer_vocab_size+cosyvoice2_token_size+3] = llm_decoder.weight
new_lm_head.bias[original_tokenizer_vocab_size:original_tokenizer_vocab_size+cosyvoice2_token_size+3] = llm_decoder.bias
new_lm_head.weight[original_tokenizer_vocab_size:original_tokenizer_vocab_size + cosyvoice2_token_size + 3] = llm_decoder.weight
new_lm_head.bias[original_tokenizer_vocab_size:original_tokenizer_vocab_size + cosyvoice2_token_size + 3] = llm_decoder.bias
llm.lm_head = new_lm_head
input_embeddings = llm.get_input_embeddings()
with torch.no_grad():
input_embeddings.weight[original_tokenizer_vocab_size:original_tokenizer_vocab_size+cosyvoice2_token_size+3] = speech_embedding.weight
input_embeddings.weight[original_tokenizer_vocab_size+cosyvoice2_token_size+3:original_tokenizer_vocab_size+cosyvoice2_token_size+3+2] = llm_embedding.weight
input_embeddings.weight[original_tokenizer_vocab_size:original_tokenizer_vocab_size + cosyvoice2_token_size + 3] = speech_embedding.weight
input_embeddings.weight[original_tokenizer_vocab_size + cosyvoice2_token_size + 3:original_tokenizer_vocab_size + cosyvoice2_token_size + 3 + 2] = llm_embedding.weight
eos_token_ids = [original_tokenizer_vocab_size + cosyvoice2_token_size, original_tokenizer_vocab_size + cosyvoice2_token_size + 1, original_tokenizer_vocab_size + cosyvoice2_token_size + 2]
eos_token_ids = [original_tokenizer_vocab_size + cosyvoice2_token_size,
original_tokenizer_vocab_size + cosyvoice2_token_size + 1,
original_tokenizer_vocab_size + cosyvoice2_token_size + 2,
original_tokenizer_vocab_size + cosyvoice2_token_size + 3]
llm.generation_config.eos_token_id = eos_token_ids
llm.generation_config.temperature = 1.0
llm.generation_config.top_p = 0.8

View File

@@ -18,7 +18,10 @@ Reward calculation for CosyVoice2-0.5B.
from __future__ import annotations
import os, re, warnings, json, time, argparse
import re
import json
import time
import argparse
from typing import List
import numpy as np
@@ -31,6 +34,7 @@ REWARD_SERVER_URL = "http://localhost:8000/v2/models/token2wav_asr/infer"
def _parse_ids(token_str: str) -> List[int]:
return [int(t) for t in re.findall(r"<\|s_(\d+)\|>", token_str)]
def _remote_reward(tokens: List[int], ground_truth: str, timeout: float = 200.0) -> float:
"""Send token IDs and ground-truth text to the Triton server and get reward."""
@@ -100,7 +104,6 @@ def compute_score(
try:
reward = _remote_reward(ids, ground_truth)
except Exception as e:
warnings.warn(f"Remote reward server error: {e}; returning 0.0")
reward = 0.0
if debug_dump:
@@ -110,6 +113,7 @@ def compute_score(
return reward
# CLI quick test
if __name__ == "__main__":
import sys
@@ -141,7 +145,6 @@ if __name__ == "__main__":
help="Run in non-interactive mode (process all samples without prompts)"
)
parser.add_argument(
"--debug",
action="store_true",

View File

@@ -102,6 +102,7 @@ import string
punctuation_all = punctuation + string.punctuation
Pathlike = Union[str, Path]
def remove_punctuation(text: str) -> str:
for x in punctuation_all:
if x == '\'':
@@ -109,6 +110,7 @@ def remove_punctuation(text: str) -> str:
text = text.replace(x, '')
return text
def store_transcripts(
filename: Pathlike, texts: Iterable[Tuple[str, str, str]], char_level: bool = False
) -> None:
@@ -304,6 +306,7 @@ def write_error_stats(
print(f"{word} {corr} {tot_errs} {ref_count} {hyp_count}", file=f)
return float(tot_err_rate)
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
@@ -590,7 +593,7 @@ def normalize_text_alimeeting(text: str) -> str:
See: https://github.com/yufan-aslp/AliMeeting/blob/main/asr/local/text_normalize.pl
"""
import re
text = text.replace('\u00A0', '') # test_hard
text = text.replace('\u00A0', '') # test_hard
text = text.replace(" ", "")
text = text.replace("<sil>", "")
text = text.replace("<%>", "")

View File

@@ -14,6 +14,13 @@
# limitations under the License.
"""Pytriton server for token2wav conversion and ASR"""
from datasets import load_dataset
from cosyvoice.cli.cosyvoice import CosyVoice2
from omnisense.models import OmniSenseVoiceSmall
from pytriton.proxy.types import Request
from pytriton.triton import Triton, TritonConfig
from pytriton.model_config import DynamicBatcher, ModelConfig, Tensor
from pytriton.decorators import batch
import argparse
import io
import logging
@@ -37,15 +44,6 @@ zh_tn_model = ZhNormalizer(
overwrite_cache=True,
)
from pytriton.decorators import batch
from pytriton.model_config import DynamicBatcher, ModelConfig, Tensor
from pytriton.triton import Triton, TritonConfig
from pytriton.proxy.types import Request
from omnisense.models import OmniSenseVoiceSmall
from cosyvoice.cli.cosyvoice import CosyVoice2
from datasets import load_dataset
sys.path.append("/workspace/CosyVoice/third_party/Matcha-TTS")
@@ -78,7 +76,6 @@ class _ASR_Server:
return {"TRANSCRIPTS": transcripts}
def audio_decode_cosyvoice2(
audio_tokens, prompt_text, prompt_speech_16k, codec_decoder
):
@@ -141,6 +138,7 @@ def get_random_prompt_from_dataset(dataset):
prompt_text = prompt_text.replace(" ", "")
return prompt_text, prompt_speech_16k
class _Token2Wav_ASR:
"""Wraps a single OmniSenseVoiceSmall model instance for Triton."""
@@ -163,6 +161,7 @@ class _Token2Wav_ASR:
self.codec_decoder = CosyVoice2(
"/workspace/CosyVoice2-0.5B", load_jit=True, load_trt=True, fp16=True
)
@batch
def __call__(self, TOKENS: np.ndarray, TOKEN_LENS: np.ndarray, GT_TEXT: np.ndarray):
"""
@@ -236,7 +235,6 @@ class _Token2Wav_ASR:
transcripts = np.char.encode(np.array(texts).reshape(-1, 1), "utf-8")
rewards_arr = np.array(rewards, dtype=np.float32).reshape(-1, 1)
return {"REWARDS": rewards_arr, "TRANSCRIPTS": transcripts}