use wav file rather than tensor

This commit is contained in:
lyuxiang.lx
2025-12-08 08:43:09 +00:00
parent d985100326
commit 622a3a19b0
3 changed files with 31 additions and 30 deletions

View File

@@ -32,7 +32,7 @@ except ImportError:
from wetext import Normalizer as ZhNormalizer
from wetext import Normalizer as EnNormalizer
use_ttsfrd = False
from cosyvoice.utils.file_utils import logging
from cosyvoice.utils.file_utils import logging, load_wav
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph, is_only_punctuation
@@ -89,7 +89,8 @@ class CosyVoiceFrontEnd:
for i in range(text_token.shape[1]):
yield text_token[:, i: i + 1]
def _extract_speech_token(self, speech):
def _extract_speech_token(self, prompt_wav):
speech = load_wav(prompt_wav, 16000)
assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
speech_token = self.speech_tokenizer_session.run(None,
@@ -101,7 +102,8 @@ class CosyVoiceFrontEnd:
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
return speech_token, speech_token_len
def _extract_spk_embedding(self, speech):
def _extract_spk_embedding(self, prompt_wav):
speech = load_wav(prompt_wav, 16000)
feat = kaldi.fbank(speech,
num_mel_bins=80,
dither=0,
@@ -112,7 +114,8 @@ class CosyVoiceFrontEnd:
embedding = torch.tensor([embedding]).to(self.device)
return embedding
def _extract_speech_feat(self, speech):
def _extract_speech_feat(self, prompt_wav):
speech = load_wav(prompt_wav, 24000)
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
speech_feat = speech_feat.unsqueeze(dim=0)
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
@@ -154,19 +157,18 @@ class CosyVoiceFrontEnd:
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
return model_input
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
def frontend_zero_shot(self, tts_text, prompt_text, prompt_wav, resample_rate, zero_shot_spk_id):
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
if zero_shot_spk_id == '':
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_wav)
speech_token, speech_token_len = self._extract_speech_token(prompt_wav)
if resample_rate == 24000:
# cosyvoice2, force speech_feat % speech_token = 2
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
embedding = self._extract_spk_embedding(prompt_speech_16k)
embedding = self._extract_spk_embedding(prompt_wav)
model_input = {'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
@@ -178,8 +180,8 @@ class CosyVoiceFrontEnd:
model_input['text_len'] = tts_text_token_len
return model_input
def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate, zero_shot_spk_id)
def frontend_cross_lingual(self, tts_text, prompt_wav, resample_rate, zero_shot_spk_id):
model_input = self.frontend_zero_shot(tts_text, '', prompt_wav, resample_rate, zero_shot_spk_id)
# in cross lingual mode, we remove prompt in llm
del model_input['prompt_text']
del model_input['prompt_text_len']
@@ -196,17 +198,16 @@ class CosyVoiceFrontEnd:
model_input['prompt_text_len'] = instruct_text_token_len
return model_input
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate, zero_shot_spk_id)
def frontend_instruct2(self, tts_text, instruct_text, prompt_wav, resample_rate, zero_shot_spk_id):
model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_wav, resample_rate, zero_shot_spk_id)
del model_input['llm_prompt_speech_token']
del model_input['llm_prompt_speech_token_len']
return model_input
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
embedding = self._extract_spk_embedding(prompt_speech_16k)
def frontend_vc(self, source_speech_16k, prompt_wav, resample_rate):
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_wav)
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_wav)
embedding = self._extract_spk_embedding(prompt_wav)
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,