mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
fix inference_instruct2 speaker ID bug
This commit is contained in:
@@ -177,10 +177,10 @@ class CosyVoice2(CosyVoice):
|
|||||||
def inference_instruct(self, *args, **kwargs):
|
def inference_instruct(self, *args, **kwargs):
|
||||||
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
|
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
|
||||||
|
|
||||||
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
|
||||||
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||||
|
|||||||
@@ -196,8 +196,8 @@ class CosyVoiceFrontEnd:
|
|||||||
model_input['prompt_text_len'] = instruct_text_token_len
|
model_input['prompt_text_len'] = instruct_text_token_len
|
||||||
return model_input
|
return model_input
|
||||||
|
|
||||||
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate):
|
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
|
||||||
model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate)
|
model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate, zero_shot_spk_id)
|
||||||
del model_input['llm_prompt_speech_token']
|
del model_input['llm_prompt_speech_token']
|
||||||
del model_input['llm_prompt_speech_token_len']
|
del model_input['llm_prompt_speech_token_len']
|
||||||
return model_input
|
return model_input
|
||||||
|
|||||||
37
test1.py
Normal file
37
test1.py
Normal file
@@ -0,0 +1,37 @@
|
|||||||
|
import sys
|
||||||
|
sys.path.append('third_party/Matcha-TTS')
|
||||||
|
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||||
|
from cosyvoice.utils.file_utils import load_wav
|
||||||
|
import torchaudio # type: ignore
|
||||||
|
|
||||||
|
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False, use_flow_cache=False)
|
||||||
|
|
||||||
|
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
||||||
|
# zero_shot usage
|
||||||
|
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
||||||
|
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||||
|
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
# save zero_shot spk for future usage
|
||||||
|
assert cosyvoice.add_zero_shot_spk('希望你以后能够做的比我还好呦。', prompt_speech_16k, 'my_zero_shot_spk') is True
|
||||||
|
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '', '', zero_shot_spk_id='my_zero_shot_spk', stream=False)):
|
||||||
|
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
cosyvoice.save_spkinfo()
|
||||||
|
|
||||||
|
# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
|
||||||
|
for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', prompt_speech_16k, stream=False)):
|
||||||
|
torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
# instruct usage
|
||||||
|
for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)):
|
||||||
|
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
# bistream usage, you can use generator as input, this is useful when using text llm model as input
|
||||||
|
# NOTE you should still have some basic sentence split logic because llm can not handle arbitrary sentence length
|
||||||
|
def text_generator():
|
||||||
|
yield '收到好友从远方寄来的生日礼物,'
|
||||||
|
yield '那份意外的惊喜与深深的祝福'
|
||||||
|
yield '让我心中充满了甜蜜的快乐,'
|
||||||
|
yield '笑容如花儿般绽放。'
|
||||||
|
for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||||
|
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
Reference in New Issue
Block a user