mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
add vc code
This commit is contained in:
@@ -25,6 +25,7 @@ class CosyVoice:
|
|||||||
|
|
||||||
def __init__(self, model_dir, load_jit=True, load_onnx=False):
|
def __init__(self, model_dir, load_jit=True, load_onnx=False):
|
||||||
instruct = True if '-Instruct' in model_dir else False
|
instruct = True if '-Instruct' in model_dir else False
|
||||||
|
vc = True if '-VC' in model_dir else False
|
||||||
self.model_dir = model_dir
|
self.model_dir = model_dir
|
||||||
if not os.path.exists(model_dir):
|
if not os.path.exists(model_dir):
|
||||||
model_dir = snapshot_download(model_dir)
|
model_dir = snapshot_download(model_dir)
|
||||||
@@ -36,6 +37,7 @@ class CosyVoice:
|
|||||||
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
||||||
'{}/spk2info.pt'.format(model_dir),
|
'{}/spk2info.pt'.format(model_dir),
|
||||||
instruct,
|
instruct,
|
||||||
|
vc,
|
||||||
configs['allowed_special'])
|
configs['allowed_special'])
|
||||||
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
||||||
self.model.load('{}/llm.pt'.format(model_dir),
|
self.model.load('{}/llm.pt'.format(model_dir),
|
||||||
@@ -58,7 +60,7 @@ class CosyVoice:
|
|||||||
model_input = self.frontend.frontend_sft(i, spk_id)
|
model_input = self.frontend.frontend_sft(i, spk_id)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
@@ -70,7 +72,7 @@ class CosyVoice:
|
|||||||
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
@@ -83,7 +85,7 @@ class CosyVoice:
|
|||||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
@@ -97,8 +99,17 @@ class CosyVoice:
|
|||||||
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
|
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
||||||
|
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k)
|
||||||
|
start_time = time.time()
|
||||||
|
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
|
||||||
|
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||||
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
|
yield model_output
|
||||||
|
start_time = time.time()
|
||||||
|
|||||||
@@ -42,6 +42,7 @@ class CosyVoiceFrontEnd:
|
|||||||
speech_tokenizer_model: str,
|
speech_tokenizer_model: str,
|
||||||
spk2info: str = '',
|
spk2info: str = '',
|
||||||
instruct: bool = False,
|
instruct: bool = False,
|
||||||
|
vc: bool = False,
|
||||||
allowed_special: str = 'all'):
|
allowed_special: str = 'all'):
|
||||||
self.tokenizer = get_tokenizer()
|
self.tokenizer = get_tokenizer()
|
||||||
self.feat_extractor = feat_extractor
|
self.feat_extractor = feat_extractor
|
||||||
@@ -55,7 +56,10 @@ class CosyVoiceFrontEnd:
|
|||||||
"CPUExecutionProvider"])
|
"CPUExecutionProvider"])
|
||||||
if os.path.exists(spk2info):
|
if os.path.exists(spk2info):
|
||||||
self.spk2info = torch.load(spk2info, map_location=self.device)
|
self.spk2info = torch.load(spk2info, map_location=self.device)
|
||||||
|
else:
|
||||||
|
self.spk2info = {}
|
||||||
self.instruct = instruct
|
self.instruct = instruct
|
||||||
|
self.vc = vc
|
||||||
self.allowed_special = allowed_special
|
self.allowed_special = allowed_special
|
||||||
self.inflect_parser = inflect.engine()
|
self.inflect_parser = inflect.engine()
|
||||||
self.use_ttsfrd = use_ttsfrd
|
self.use_ttsfrd = use_ttsfrd
|
||||||
@@ -172,3 +176,15 @@ class CosyVoiceFrontEnd:
|
|||||||
model_input['prompt_text'] = instruct_text_token
|
model_input['prompt_text'] = instruct_text_token
|
||||||
model_input['prompt_text_len'] = instruct_text_token_len
|
model_input['prompt_text_len'] = instruct_text_token_len
|
||||||
return model_input
|
return model_input
|
||||||
|
|
||||||
|
def frontend_vc(self, source_speech_16k, prompt_speech_16k):
|
||||||
|
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||||||
|
prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k)
|
||||||
|
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_22050)
|
||||||
|
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||||||
|
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
|
||||||
|
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
|
||||||
|
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
|
||||||
|
'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
|
||||||
|
'flow_embedding': embedding}
|
||||||
|
return model_input
|
||||||
|
|||||||
@@ -124,7 +124,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|||||||
# text encode
|
# text encode
|
||||||
h, h_lengths = self.encoder(token, token_len)
|
h, h_lengths = self.encoder(token, token_len)
|
||||||
h = self.encoder_proj(h)
|
h = self.encoder_proj(h)
|
||||||
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / 50 * 22050 / 256)
|
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
|
||||||
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2)
|
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2)
|
||||||
|
|
||||||
# get conditions
|
# get conditions
|
||||||
@@ -132,7 +132,6 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|||||||
conds[:, :mel_len1] = prompt_feat
|
conds[:, :mel_len1] = prompt_feat
|
||||||
conds = conds.transpose(1, 2)
|
conds = conds.transpose(1, 2)
|
||||||
|
|
||||||
# mask = (~make_pad_mask(feat_len)).to(h)
|
|
||||||
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
||||||
feat = self.decoder(
|
feat = self.decoder(
|
||||||
mu=h.transpose(1, 2).contiguous(),
|
mu=h.transpose(1, 2).contiguous(),
|
||||||
|
|||||||
@@ -206,7 +206,7 @@ class TransformerLM(torch.nn.Module):
|
|||||||
if top_ids == self.speech_token_size:
|
if top_ids == self.speech_token_size:
|
||||||
break
|
break
|
||||||
# in stream mode, yield token one by one
|
# in stream mode, yield token one by one
|
||||||
yield torch.tensor([[top_ids]], dtype=torch.int64, device=device)
|
yield top_ids
|
||||||
out_tokens.append(top_ids)
|
out_tokens.append(top_ids)
|
||||||
offset += lm_input.size(1)
|
offset += lm_input.size(1)
|
||||||
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
|
|||||||
@@ -4,6 +4,7 @@ import string
|
|||||||
from dataclasses import dataclass, field
|
from dataclasses import dataclass, field
|
||||||
from functools import cached_property, lru_cache
|
from functools import cached_property, lru_cache
|
||||||
from typing import Dict, List, Optional, Tuple
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
from whisper.tokenizer import Tokenizer
|
||||||
|
|
||||||
import tiktoken
|
import tiktoken
|
||||||
|
|
||||||
@@ -165,208 +166,6 @@ TTS_Vocal_Token = {
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class Tokenizer:
|
|
||||||
"""A thin wrapper around `tiktoken` providing quick access to special tokens"""
|
|
||||||
|
|
||||||
encoding: tiktoken.Encoding
|
|
||||||
num_languages: int
|
|
||||||
language: Optional[str] = None
|
|
||||||
task: Optional[str] = None
|
|
||||||
sot_sequence: Tuple[int] = ()
|
|
||||||
special_tokens: Dict[str, int] = field(default_factory=dict)
|
|
||||||
|
|
||||||
def __post_init__(self):
|
|
||||||
for special in self.encoding.special_tokens_set:
|
|
||||||
special_token = self.encoding.encode_single_token(special)
|
|
||||||
self.special_tokens[special] = special_token
|
|
||||||
|
|
||||||
sot: int = self.special_tokens["<|startoftranscript|>"]
|
|
||||||
translate: int = self.special_tokens["<|translate|>"]
|
|
||||||
transcribe: int = self.special_tokens["<|transcribe|>"]
|
|
||||||
|
|
||||||
langs = tuple(LANGUAGES.keys())[: self.num_languages]
|
|
||||||
sot_sequence = [sot]
|
|
||||||
if self.language is not None:
|
|
||||||
sot_sequence.append(sot + 1 + langs.index(self.language))
|
|
||||||
if self.task is not None:
|
|
||||||
task_token: int = transcribe if self.task == "transcribe" else translate
|
|
||||||
sot_sequence.append(task_token)
|
|
||||||
|
|
||||||
self.sot_sequence = tuple(sot_sequence)
|
|
||||||
|
|
||||||
def encode(self, text, **kwargs):
|
|
||||||
return self.encoding.encode(text, **kwargs)
|
|
||||||
|
|
||||||
def decode(self, token_ids: List[int], **kwargs) -> str:
|
|
||||||
token_ids = [t for t in token_ids if t < self.timestamp_begin]
|
|
||||||
return self.encoding.decode(token_ids, **kwargs)
|
|
||||||
|
|
||||||
def decode_with_timestamps(self, token_ids: List[int], **kwargs) -> str:
|
|
||||||
"""
|
|
||||||
Timestamp tokens are above other special tokens' id range and are ignored by `decode()`.
|
|
||||||
This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
|
|
||||||
"""
|
|
||||||
return self.encoding.decode(token_ids, **kwargs)
|
|
||||||
|
|
||||||
def get_vocab_size(self) -> int:
|
|
||||||
return self.encoding.n_vocab
|
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def eot(self) -> int:
|
|
||||||
return self.encoding.eot_token
|
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def transcribe(self) -> int:
|
|
||||||
return self.special_tokens["<|transcribe|>"]
|
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def translate(self) -> int:
|
|
||||||
return self.special_tokens["<|translate|>"]
|
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def sot(self) -> int:
|
|
||||||
return self.special_tokens["<|startoftranscript|>"]
|
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def sot_lm(self) -> int:
|
|
||||||
return self.special_tokens["<|startoflm|>"]
|
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def sot_prev(self) -> int:
|
|
||||||
return self.special_tokens["<|startofprev|>"]
|
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def no_speech(self) -> int:
|
|
||||||
return self.special_tokens["<|nospeech|>"]
|
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def no_timestamps(self) -> int:
|
|
||||||
return self.special_tokens["<|notimestamps|>"]
|
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def timestamp_begin(self) -> int:
|
|
||||||
return self.special_tokens["<|0.00|>"]
|
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def language_token(self) -> int:
|
|
||||||
"""Returns the token id corresponding to the value of the `language` field"""
|
|
||||||
if self.language is None:
|
|
||||||
raise ValueError("This tokenizer does not have language token configured")
|
|
||||||
|
|
||||||
return self.to_language_token(self.language)
|
|
||||||
|
|
||||||
def to_language_token(self, language):
|
|
||||||
if token := self.special_tokens.get(f"<|{language}|>", None):
|
|
||||||
return token
|
|
||||||
|
|
||||||
raise KeyError(f"Language {language} not found in tokenizer.")
|
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def all_language_tokens(self) -> Tuple[int]:
|
|
||||||
result = []
|
|
||||||
for token, token_id in self.special_tokens.items():
|
|
||||||
if token.strip("<|>") in LANGUAGES:
|
|
||||||
result.append(token_id)
|
|
||||||
return tuple(result)[: self.num_languages]
|
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def all_language_codes(self) -> Tuple[str]:
|
|
||||||
return tuple(self.decode([_l]).strip("<|>") for _l in self.all_language_tokens)
|
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def sot_sequence_including_notimestamps(self) -> Tuple[int]:
|
|
||||||
return tuple(list(self.sot_sequence) + [self.no_timestamps])
|
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def non_speech_tokens(self) -> Tuple[int]:
|
|
||||||
"""
|
|
||||||
Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
|
|
||||||
annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
|
|
||||||
|
|
||||||
- ♪♪♪
|
|
||||||
- ( SPEAKING FOREIGN LANGUAGE )
|
|
||||||
- [DAVID] Hey there,
|
|
||||||
|
|
||||||
keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
|
|
||||||
"""
|
|
||||||
symbols = list('"#()*+/:;<=>@[\\]^_`{|}~「」『』')
|
|
||||||
symbols += (
|
|
||||||
"<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
|
|
||||||
)
|
|
||||||
|
|
||||||
# symbols that may be a single token or multiple tokens depending on the tokenizer.
|
|
||||||
# In case they're multiple tokens, suppress the first token, which is safe because:
|
|
||||||
# These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
|
|
||||||
# in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
|
|
||||||
miscellaneous = set("♩♪♫♬♭♮♯")
|
|
||||||
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
|
|
||||||
|
|
||||||
# allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
|
|
||||||
result = {self.encoding.encode(" -")[0], self.encoding.encode(" '")[0]}
|
|
||||||
for symbol in symbols + list(miscellaneous):
|
|
||||||
for tokens in [
|
|
||||||
self.encoding.encode(symbol),
|
|
||||||
self.encoding.encode(" " + symbol),
|
|
||||||
]:
|
|
||||||
if len(tokens) == 1 or symbol in miscellaneous:
|
|
||||||
result.add(tokens[0])
|
|
||||||
|
|
||||||
return tuple(sorted(result))
|
|
||||||
|
|
||||||
def split_to_word_tokens(self, tokens: List[int]):
|
|
||||||
if self.language in {"zh", "ja", "th", "lo", "my", "yue"}:
|
|
||||||
# These languages don't typically use spaces, so it is difficult to split words
|
|
||||||
# without morpheme analysis. Here, we instead split words at any
|
|
||||||
# position where the tokens are decoded as valid unicode points
|
|
||||||
return self.split_tokens_on_unicode(tokens)
|
|
||||||
|
|
||||||
return self.split_tokens_on_spaces(tokens)
|
|
||||||
|
|
||||||
def split_tokens_on_unicode(self, tokens: List[int]):
|
|
||||||
decoded_full = self.decode_with_timestamps(tokens)
|
|
||||||
replacement_char = "\ufffd"
|
|
||||||
|
|
||||||
words = []
|
|
||||||
word_tokens = []
|
|
||||||
current_tokens = []
|
|
||||||
unicode_offset = 0
|
|
||||||
|
|
||||||
for token in tokens:
|
|
||||||
current_tokens.append(token)
|
|
||||||
decoded = self.decode_with_timestamps(current_tokens)
|
|
||||||
|
|
||||||
if (
|
|
||||||
replacement_char not in decoded
|
|
||||||
or decoded_full[unicode_offset + decoded.index(replacement_char)]
|
|
||||||
== replacement_char
|
|
||||||
):
|
|
||||||
words.append(decoded)
|
|
||||||
word_tokens.append(current_tokens)
|
|
||||||
current_tokens = []
|
|
||||||
unicode_offset += len(decoded)
|
|
||||||
|
|
||||||
return words, word_tokens
|
|
||||||
|
|
||||||
def split_tokens_on_spaces(self, tokens: List[int]):
|
|
||||||
subwords, subword_tokens_list = self.split_tokens_on_unicode(tokens)
|
|
||||||
words = []
|
|
||||||
word_tokens = []
|
|
||||||
|
|
||||||
for subword, subword_tokens in zip(subwords, subword_tokens_list):
|
|
||||||
special = subword_tokens[0] >= self.eot
|
|
||||||
with_space = subword.startswith(" ")
|
|
||||||
punctuation = subword.strip() in string.punctuation
|
|
||||||
if special or with_space or punctuation or len(words) == 0:
|
|
||||||
words.append(subword)
|
|
||||||
word_tokens.append(subword_tokens)
|
|
||||||
else:
|
|
||||||
words[-1] = words[-1] + subword
|
|
||||||
word_tokens[-1].extend(subword_tokens)
|
|
||||||
|
|
||||||
return words, word_tokens
|
|
||||||
|
|
||||||
|
|
||||||
@lru_cache(maxsize=None)
|
@lru_cache(maxsize=None)
|
||||||
def get_encoding(name: str = "gpt2", num_languages: int = 99):
|
def get_encoding(name: str = "gpt2", num_languages: int = 99):
|
||||||
vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
|
vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
|
||||||
|
|||||||
@@ -15,8 +15,10 @@
|
|||||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||||
"""Unility functions for Transformer."""
|
"""Unility functions for Transformer."""
|
||||||
|
|
||||||
|
import random
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
IGNORE_ID = -1
|
IGNORE_ID = -1
|
||||||
@@ -142,3 +144,9 @@ def fade_in_out(fade_in_mel, fade_out_mel, window):
|
|||||||
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
|
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
|
||||||
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
|
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
|
||||||
return fade_in_mel.to(device)
|
return fade_in_mel.to(device)
|
||||||
|
|
||||||
|
def set_all_random_seed(seed):
|
||||||
|
random.seed(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
torch.cuda.manual_seed_all(seed)
|
||||||
|
|||||||
8
webui.py
8
webui.py
@@ -24,6 +24,7 @@ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|||||||
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
|
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||||
from cosyvoice.utils.file_utils import load_wav, logging
|
from cosyvoice.utils.file_utils import load_wav, logging
|
||||||
|
from cosyvoice.utils.common import set_all_random_seed
|
||||||
|
|
||||||
inference_mode_list = ['预训练音色', '3s极速复刻', '跨语种复刻', '自然语言控制']
|
inference_mode_list = ['预训练音色', '3s极速复刻', '跨语种复刻', '自然语言控制']
|
||||||
instruct_dict = {'预训练音色': '1. 选择预训练音色\n2. 点击生成音频按钮',
|
instruct_dict = {'预训练音色': '1. 选择预训练音色\n2. 点击生成音频按钮',
|
||||||
@@ -42,13 +43,6 @@ def generate_seed():
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
def set_all_random_seed(seed):
|
|
||||||
random.seed(seed)
|
|
||||||
np.random.seed(seed)
|
|
||||||
torch.manual_seed(seed)
|
|
||||||
torch.cuda.manual_seed_all(seed)
|
|
||||||
|
|
||||||
|
|
||||||
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
|
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
|
||||||
speech, _ = librosa.effects.trim(
|
speech, _ = librosa.effects.trim(
|
||||||
speech, top_db=top_db,
|
speech, top_db=top_db,
|
||||||
|
|||||||
Reference in New Issue
Block a user