add vc code

This commit is contained in:
lyuxiang.lx
2024-09-26 10:49:22 +08:00
parent ed87445540
commit 49015f63e6
7 changed files with 43 additions and 216 deletions

View File

@@ -25,6 +25,7 @@ class CosyVoice:
def __init__(self, model_dir, load_jit=True, load_onnx=False):
instruct = True if '-Instruct' in model_dir else False
vc = True if '-VC' in model_dir else False
self.model_dir = model_dir
if not os.path.exists(model_dir):
model_dir = snapshot_download(model_dir)
@@ -36,6 +37,7 @@ class CosyVoice:
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
'{}/spk2info.pt'.format(model_dir),
instruct,
vc,
configs['allowed_special'])
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
self.model.load('{}/llm.pt'.format(model_dir),
@@ -58,7 +60,7 @@ class CosyVoice:
model_input = self.frontend.frontend_sft(i, spk_id)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / 22050
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
@@ -70,7 +72,7 @@ class CosyVoice:
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / 22050
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
@@ -83,7 +85,7 @@ class CosyVoice:
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / 22050
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
@@ -97,8 +99,17 @@ class CosyVoice:
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / 22050
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k)
start_time = time.time()
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / 22050
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()

View File

@@ -42,6 +42,7 @@ class CosyVoiceFrontEnd:
speech_tokenizer_model: str,
spk2info: str = '',
instruct: bool = False,
vc: bool = False,
allowed_special: str = 'all'):
self.tokenizer = get_tokenizer()
self.feat_extractor = feat_extractor
@@ -55,7 +56,10 @@ class CosyVoiceFrontEnd:
"CPUExecutionProvider"])
if os.path.exists(spk2info):
self.spk2info = torch.load(spk2info, map_location=self.device)
else:
self.spk2info = {}
self.instruct = instruct
self.vc = vc
self.allowed_special = allowed_special
self.inflect_parser = inflect.engine()
self.use_ttsfrd = use_ttsfrd
@@ -172,3 +176,15 @@ class CosyVoiceFrontEnd:
model_input['prompt_text'] = instruct_text_token
model_input['prompt_text_len'] = instruct_text_token_len
return model_input
def frontend_vc(self, source_speech_16k, prompt_speech_16k):
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k)
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_22050)
embedding = self._extract_spk_embedding(prompt_speech_16k)
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
'flow_embedding': embedding}
return model_input