mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
add train cfg in flow matching
This commit is contained in:
78
runtime/python/fastapi/fastapi_client.py
Normal file
78
runtime/python/fastapi/fastapi_client.py
Normal file
@@ -0,0 +1,78 @@
|
||||
import argparse
|
||||
import logging
|
||||
import requests
|
||||
|
||||
def saveResponse(path, response):
|
||||
# 以二进制写入模式打开文件
|
||||
with open(path, 'wb') as file:
|
||||
# 将响应的二进制内容写入文件
|
||||
file.write(response.content)
|
||||
|
||||
def main():
|
||||
api = args.api_base
|
||||
if args.mode == 'sft':
|
||||
url = api + "/api/inference/sft"
|
||||
payload={
|
||||
'tts': args.tts_text,
|
||||
'role': args.spk_id
|
||||
}
|
||||
response = requests.request("POST", url, data=payload)
|
||||
saveResponse(args.tts_wav, response)
|
||||
elif args.mode == 'zero_shot':
|
||||
url = api + "/api/inference/zero-shot"
|
||||
payload={
|
||||
'tts': args.tts_text,
|
||||
'prompt': args.prompt_text
|
||||
}
|
||||
files=[('audio', ('prompt_audio.wav', open(args.prompt_wav,'rb'), 'application/octet-stream'))]
|
||||
response = requests.request("POST", url, data=payload, files=files)
|
||||
saveResponse(args.tts_wav, response)
|
||||
elif args.mode == 'cross_lingual':
|
||||
url = api + "/api/inference/cross-lingual"
|
||||
payload={
|
||||
'tts': args.tts_text,
|
||||
}
|
||||
files=[('audio', ('prompt_audio.wav', open(args.prompt_wav,'rb'), 'application/octet-stream'))]
|
||||
response = requests.request("POST", url, data=payload, files=files)
|
||||
saveResponse(args.tts_wav, response)
|
||||
else:
|
||||
url = api + "/api/inference/instruct"
|
||||
payload = {
|
||||
'tts': args.tts_text,
|
||||
'role': args.spk_id,
|
||||
'instruct': args.instruct_text
|
||||
}
|
||||
response = requests.request("POST", url, data=payload)
|
||||
saveResponse(args.tts_wav, response)
|
||||
logging.info("Response save to {}", args.tts_wav)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--api_base',
|
||||
type=str,
|
||||
default='http://127.0.0.1:6006')
|
||||
parser.add_argument('--mode',
|
||||
default='sft',
|
||||
choices=['sft', 'zero_shot', 'cross_lingual', 'instruct'],
|
||||
help='request mode')
|
||||
parser.add_argument('--tts_text',
|
||||
type=str,
|
||||
default='你好,我是通义千问语音合成大模型,请问有什么可以帮您的吗?')
|
||||
parser.add_argument('--spk_id',
|
||||
type=str,
|
||||
default='中文女')
|
||||
parser.add_argument('--prompt_text',
|
||||
type=str,
|
||||
default='希望你以后能够做的比我还好呦。')
|
||||
parser.add_argument('--prompt_wav',
|
||||
type=str,
|
||||
default='../../zero_shot_prompt.wav')
|
||||
parser.add_argument('--instruct_text',
|
||||
type=str,
|
||||
default='Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')
|
||||
parser.add_argument('--tts_wav',
|
||||
type=str,
|
||||
default='demo.wav')
|
||||
args = parser.parse_args()
|
||||
prompt_sr, target_sr = 16000, 22050
|
||||
main()
|
||||
109
runtime/python/fastapi/fastapi_server.py
Normal file
109
runtime/python/fastapi/fastapi_server.py
Normal file
@@ -0,0 +1,109 @@
|
||||
# Set inference model
|
||||
# export MODEL_DIR=pretrained_models/CosyVoice-300M-Instruct
|
||||
# For development
|
||||
# fastapi dev --port 6006 fastapi_server.py
|
||||
# For production deployment
|
||||
# fastapi run --port 6006 fastapi_server.py
|
||||
|
||||
import os
|
||||
import sys
|
||||
import io,time
|
||||
from fastapi import FastAPI, Response, File, UploadFile, Form
|
||||
from fastapi.responses import HTMLResponse
|
||||
from contextlib import asynccontextmanager
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||
from cosyvoice.utils.file_utils import load_wav
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchaudio
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
|
||||
class LaunchFailed(Exception):
|
||||
pass
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
model_dir = os.getenv("MODEL_DIR", "pretrained_models/CosyVoice-300M-SFT")
|
||||
if model_dir:
|
||||
logging.info("MODEL_DIR is {}", model_dir)
|
||||
app.cosyvoice = CosyVoice('../../'+model_dir)
|
||||
# sft usage
|
||||
logging.info("Avaliable speakers {}", app.cosyvoice.list_avaliable_spks())
|
||||
else:
|
||||
raise LaunchFailed("MODEL_DIR environment must set")
|
||||
yield
|
||||
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
|
||||
def buildResponse(output):
|
||||
buffer = io.BytesIO()
|
||||
torchaudio.save(buffer, output, 22050, format="wav")
|
||||
buffer.seek(0)
|
||||
return Response(content=buffer.read(-1), media_type="audio/wav")
|
||||
|
||||
@app.post("/api/inference/sft")
|
||||
@app.get("/api/inference/sft")
|
||||
async def sft(tts: str = Form(), role: str = Form()):
|
||||
start = time.process_time()
|
||||
output = app.cosyvoice.inference_sft(tts, role)
|
||||
end = time.process_time()
|
||||
logging.info("infer time is {} seconds", end-start)
|
||||
return buildResponse(output['tts_speech'])
|
||||
|
||||
@app.post("/api/inference/zero-shot")
|
||||
async def zeroShot(tts: str = Form(), prompt: str = Form(), audio: UploadFile = File()):
|
||||
start = time.process_time()
|
||||
prompt_speech = load_wav(audio.file, 16000)
|
||||
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
|
||||
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
||||
|
||||
output = app.cosyvoice.inference_zero_shot(tts, prompt, prompt_speech_16k)
|
||||
end = time.process_time()
|
||||
logging.info("infer time is {} seconds", end-start)
|
||||
return buildResponse(output['tts_speech'])
|
||||
|
||||
@app.post("/api/inference/cross-lingual")
|
||||
async def crossLingual(tts: str = Form(), audio: UploadFile = File()):
|
||||
start = time.process_time()
|
||||
prompt_speech = load_wav(audio.file, 16000)
|
||||
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
|
||||
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
||||
|
||||
output = app.cosyvoice.inference_cross_lingual(tts, prompt_speech_16k)
|
||||
end = time.process_time()
|
||||
logging.info("infer time is {} seconds", end-start)
|
||||
return buildResponse(output['tts_speech'])
|
||||
|
||||
@app.post("/api/inference/instruct")
|
||||
@app.get("/api/inference/instruct")
|
||||
async def instruct(tts: str = Form(), role: str = Form(), instruct: str = Form()):
|
||||
start = time.process_time()
|
||||
output = app.cosyvoice.inference_instruct(tts, role, instruct)
|
||||
end = time.process_time()
|
||||
logging.info("infer time is {} seconds", end-start)
|
||||
return buildResponse(output['tts_speech'])
|
||||
|
||||
@app.get("/api/roles")
|
||||
async def roles():
|
||||
return {"roles": app.cosyvoice.list_avaliable_spks()}
|
||||
|
||||
@app.get("/", response_class=HTMLResponse)
|
||||
async def root():
|
||||
return """
|
||||
<!DOCTYPE html>
|
||||
<html lang=zh-cn>
|
||||
<head>
|
||||
<meta charset=utf-8>
|
||||
<title>Api information</title>
|
||||
</head>
|
||||
<body>
|
||||
Get the supported tones from the Roles API first, then enter the tones and textual content in the TTS API for synthesis. <a href='./docs'>Documents of API</a>
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
Reference in New Issue
Block a user