mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 01:49:25 +08:00
fix lint
This commit is contained in:
@@ -57,7 +57,7 @@ class CausalConv1d(torch.nn.Conv1d):
|
||||
assert stride == 1
|
||||
self.causal_padding = kernel_size - 1
|
||||
|
||||
def forward(self, x: torch.Tensor, cache: torch.Tensor=torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
def forward(self, x: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if cache.size(2) == 0:
|
||||
x = F.pad(x, (self.causal_padding, 0), value=0.0)
|
||||
else:
|
||||
@@ -79,7 +79,7 @@ class CausalBlock1D(Block1D):
|
||||
nn.Mish(),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, mask: torch.Tensor, cache: torch.Tensor=torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
def forward(self, x: torch.Tensor, mask: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
output, cache = self.block[0](x * mask, cache)
|
||||
for i in range(1, len(self.block)):
|
||||
output = self.block[i](output)
|
||||
@@ -92,7 +92,9 @@ class CausalResnetBlock1D(ResnetBlock1D):
|
||||
self.block1 = CausalBlock1D(dim, dim_out)
|
||||
self.block2 = CausalBlock1D(dim_out, dim_out)
|
||||
|
||||
def forward(self, x: torch.Tensor, mask: torch.Tensor, time_emb: torch.Tensor, block1_cache: torch.Tensor=torch.zeros(0, 0, 0), block2_cache: torch.Tensor=torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
def forward(self, x: torch.Tensor, mask: torch.Tensor, time_emb: torch.Tensor,
|
||||
block1_cache: torch.Tensor = torch.zeros(0, 0, 0), block2_cache: torch.Tensor = torch.zeros(0, 0, 0)
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
h, block1_cache = self.block1(x, mask, block1_cache)
|
||||
h += self.mlp(time_emb).unsqueeze(-1)
|
||||
h, block2_cache = self.block2(h, mask, block2_cache)
|
||||
@@ -120,7 +122,8 @@ class CausalAttnProcessor2_0(AttnProcessor2_0):
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, torch.Tensor]:
|
||||
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
||||
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
||||
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. \
|
||||
`scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
||||
deprecate("scale", "1.0.0", deprecation_message)
|
||||
|
||||
residual = hidden_states
|
||||
@@ -224,8 +227,10 @@ class CausalAttention(Attention):
|
||||
processor: Optional["AttnProcessor2_0"] = None,
|
||||
out_dim: int = None,
|
||||
):
|
||||
super(CausalAttention, self).__init__(query_dim, cross_attention_dim, heads, dim_head, dropout, bias, upcast_attention, upcast_softmax, cross_attention_norm, cross_attention_norm_num_groups, qk_norm,
|
||||
added_kv_proj_dim, norm_num_groups, spatial_norm_dim, out_bias, scale_qk, only_cross_attention, eps, rescale_output_factor, residual_connection, _from_deprecated_attn_block, processor, out_dim)
|
||||
super(CausalAttention, self).__init__(query_dim, cross_attention_dim, heads, dim_head, dropout, bias, upcast_attention, upcast_softmax,
|
||||
cross_attention_norm, cross_attention_norm_num_groups, qk_norm, added_kv_proj_dim, norm_num_groups,
|
||||
spatial_norm_dim, out_bias, scale_qk, only_cross_attention, eps, rescale_output_factor, residual_connection,
|
||||
_from_deprecated_attn_block, processor, out_dim)
|
||||
processor = CausalAttnProcessor2_0()
|
||||
self.set_processor(processor)
|
||||
|
||||
@@ -294,8 +299,10 @@ class CausalBasicTransformerBlock(BasicTransformerBlock):
|
||||
norm_type: str = "layer_norm",
|
||||
final_dropout: bool = False,
|
||||
):
|
||||
super(CausalBasicTransformerBlock, self).__init__(dim, num_attention_heads, attention_head_dim, dropout, cross_attention_dim, activation_fn, num_embeds_ada_norm,
|
||||
attention_bias, only_cross_attention, double_self_attention, upcast_attention, norm_elementwise_affine, norm_type, final_dropout)
|
||||
super(CausalBasicTransformerBlock, self).__init__(dim, num_attention_heads, attention_head_dim, dropout,
|
||||
cross_attention_dim, activation_fn, num_embeds_ada_norm,
|
||||
attention_bias, only_cross_attention, double_self_attention,
|
||||
upcast_attention, norm_elementwise_affine, norm_type, final_dropout)
|
||||
self.attn1 = CausalAttention(
|
||||
query_dim=dim,
|
||||
heads=num_attention_heads,
|
||||
@@ -364,9 +371,8 @@ class CausalBasicTransformerBlock(BasicTransformerBlock):
|
||||
if self._chunk_size is not None:
|
||||
# "feed_forward_chunk_size" can be used to save memory
|
||||
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
||||
raise ValueError(
|
||||
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
||||
)
|
||||
raise ValueError(f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: \
|
||||
{self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.")
|
||||
|
||||
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
||||
ff_output = torch.cat(
|
||||
@@ -794,14 +800,14 @@ class CausalConditionalDecoder(ConditionalDecoder):
|
||||
return output * mask
|
||||
|
||||
def forward_chunk(self, x, mask, mu, t, spks=None, cond=None,
|
||||
down_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||
down_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
||||
mid_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||
mid_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
||||
up_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||
up_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
||||
final_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0)
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
down_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||
down_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
||||
mid_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||
mid_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
||||
up_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||
up_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
||||
final_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0)
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Forward pass of the UNet1DConditional model.
|
||||
|
||||
Args:
|
||||
@@ -838,7 +844,8 @@ class CausalConditionalDecoder(ConditionalDecoder):
|
||||
up_blocks_kv_cache_new = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x.device)
|
||||
for index, (resnet, transformer_blocks, downsample) in enumerate(self.down_blocks):
|
||||
mask_down = masks[-1]
|
||||
x, down_blocks_conv_cache[index][:, :320], down_blocks_conv_cache[index][:, 320: 576] = resnet(x, mask_down, t, down_blocks_conv_cache[index][:, :320], down_blocks_conv_cache[index][:, 320: 576])
|
||||
x, down_blocks_conv_cache[index][:, :320], down_blocks_conv_cache[index][:, 320: 576] = \
|
||||
resnet(x, mask_down, t, down_blocks_conv_cache[index][:, :320], down_blocks_conv_cache[index][:, 320: 576])
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + down_blocks_kv_cache.size(3), device=x.device).bool()
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
@@ -857,7 +864,8 @@ class CausalConditionalDecoder(ConditionalDecoder):
|
||||
mask_mid = masks[-1]
|
||||
|
||||
for index, (resnet, transformer_blocks) in enumerate(self.mid_blocks):
|
||||
x, mid_blocks_conv_cache[index][:, :256], mid_blocks_conv_cache[index][:, 256:] = resnet(x, mask_mid, t, mid_blocks_conv_cache[index][:, :256], mid_blocks_conv_cache[index][:, 256:])
|
||||
x, mid_blocks_conv_cache[index][:, :256], mid_blocks_conv_cache[index][:, 256:] = \
|
||||
resnet(x, mask_mid, t, mid_blocks_conv_cache[index][:, :256], mid_blocks_conv_cache[index][:, 256:])
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + mid_blocks_kv_cache.size(3), device=x.device).bool()
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
@@ -874,7 +882,8 @@ class CausalConditionalDecoder(ConditionalDecoder):
|
||||
mask_up = masks.pop()
|
||||
skip = hiddens.pop()
|
||||
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
||||
x, up_blocks_conv_cache[index][:, :512], up_blocks_conv_cache[index][:, 512: 768] = resnet(x, mask_up, t, up_blocks_conv_cache[index][:, :512], up_blocks_conv_cache[index][:, 512: 768])
|
||||
x, up_blocks_conv_cache[index][:, :512], up_blocks_conv_cache[index][:, 512: 768] = \
|
||||
resnet(x, mask_up, t, up_blocks_conv_cache[index][:, :512], up_blocks_conv_cache[index][:, 512: 768])
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + up_blocks_kv_cache.size(3), device=x.device).bool()
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
@@ -889,4 +898,5 @@ class CausalConditionalDecoder(ConditionalDecoder):
|
||||
x, up_blocks_conv_cache[index][:, 768:] = upsample(x * mask_up, up_blocks_conv_cache[index][:, 768:])
|
||||
x, final_blocks_conv_cache = self.final_block(x, mask_up, final_blocks_conv_cache)
|
||||
output = self.final_proj(x * mask_up)
|
||||
return output * mask, down_blocks_conv_cache, down_blocks_kv_cache_new, mid_blocks_conv_cache, mid_blocks_kv_cache_new, up_blocks_conv_cache, up_blocks_kv_cache_new, final_blocks_conv_cache
|
||||
return output * mask, down_blocks_conv_cache, down_blocks_kv_cache_new, mid_blocks_conv_cache, mid_blocks_kv_cache_new, \
|
||||
up_blocks_conv_cache, up_blocks_kv_cache_new, final_blocks_conv_cache
|
||||
|
||||
@@ -112,10 +112,6 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
||||
prompt_feat_len,
|
||||
embedding,
|
||||
flow_cache):
|
||||
if self.fp16 is True:
|
||||
prompt_feat = prompt_feat.half()
|
||||
embedding = embedding.half()
|
||||
|
||||
assert token.shape[0] == 1
|
||||
# xvec projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
@@ -146,7 +142,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
||||
cond=conds,
|
||||
n_timesteps=10,
|
||||
prompt_len=mel_len1,
|
||||
flow_cache=flow_cache
|
||||
cache=flow_cache
|
||||
)
|
||||
feat = feat[:, :, mel_len1:]
|
||||
assert feat.shape[2] == mel_len2
|
||||
@@ -249,10 +245,6 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
embedding,
|
||||
cache,
|
||||
finalize):
|
||||
if self.fp16 is True:
|
||||
prompt_feat = prompt_feat.half()
|
||||
embedding = embedding.half()
|
||||
|
||||
assert token.shape[0] == 1
|
||||
# xvec projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
|
||||
@@ -133,13 +133,13 @@ class ConditionalCFM(BASECFM):
|
||||
self.estimator.set_input_shape('spks', (2, 80))
|
||||
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
||||
# run trt engine
|
||||
self.estimator.execute_v2([x.contiguous().data_ptr(),
|
||||
mask.contiguous().data_ptr(),
|
||||
mu.contiguous().data_ptr(),
|
||||
t.contiguous().data_ptr(),
|
||||
spks.contiguous().data_ptr(),
|
||||
cond.contiguous().data_ptr(),
|
||||
x.data_ptr()])
|
||||
assert self.estimator.execute_v2([x.contiguous().data_ptr(),
|
||||
mask.contiguous().data_ptr(),
|
||||
mu.contiguous().data_ptr(),
|
||||
t.contiguous().data_ptr(),
|
||||
spks.contiguous().data_ptr(),
|
||||
cond.contiguous().data_ptr(),
|
||||
x.data_ptr()]) is True
|
||||
return x
|
||||
|
||||
def compute_loss(self, x1, mask, mu, spks=None, cond=None, streaming=False):
|
||||
@@ -244,9 +244,9 @@ class CausalConditionalCFM(ConditionalCFM):
|
||||
sol = []
|
||||
|
||||
# estimator cache for each step
|
||||
down_blocks_kv_cache_new = torch.zeros(10, 1, 4, 2, x.size(2), 512, 2).to(x.device)
|
||||
mid_blocks_kv_cache_new = torch.zeros(10, 12, 4, 2, x.size(2), 512, 2).to(x.device)
|
||||
up_blocks_kv_cache_new = torch.zeros(10, 1, 4, 2, x.size(2), 512, 2).to(x.device)
|
||||
down_blocks_kv_cache_new = torch.zeros(10, 1, 4, 2, x.size(2), 512, 2).to(x)
|
||||
mid_blocks_kv_cache_new = torch.zeros(10, 12, 4, 2, x.size(2), 512, 2).to(x)
|
||||
up_blocks_kv_cache_new = torch.zeros(10, 1, 4, 2, x.size(2), 512, 2).to(x)
|
||||
|
||||
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
|
||||
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
||||
@@ -302,12 +302,43 @@ class CausalConditionalCFM(ConditionalCFM):
|
||||
self.estimator.set_input_shape('t', (2,))
|
||||
self.estimator.set_input_shape('spks', (2, 80))
|
||||
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
||||
self.estimator.set_input_shape('down_blocks_conv_cache', cache['down_blocks_conv_cache'].shape)
|
||||
self.estimator.set_input_shape('down_blocks_kv_cache', cache['down_blocks_kv_cache'].shape)
|
||||
self.estimator.set_input_shape('mid_blocks_conv_cache', cache['mid_blocks_conv_cache'].shape)
|
||||
self.estimator.set_input_shape('mid_blocks_kv_cache', cache['mid_blocks_kv_cache'].shape)
|
||||
self.estimator.set_input_shape('up_blocks_conv_cache', cache['up_blocks_conv_cache'].shape)
|
||||
self.estimator.set_input_shape('up_blocks_kv_cache', cache['up_blocks_kv_cache'].shape)
|
||||
self.estimator.set_input_shape('final_blocks_conv_cache', cache['final_blocks_conv_cache'].shape)
|
||||
# run trt engine
|
||||
self.estimator.execute_v2([x.contiguous().data_ptr(),
|
||||
mask.contiguous().data_ptr(),
|
||||
mu.contiguous().data_ptr(),
|
||||
t.contiguous().data_ptr(),
|
||||
spks.contiguous().data_ptr(),
|
||||
cond.contiguous().data_ptr(),
|
||||
x.data_ptr()])
|
||||
down_blocks_kv_cache_out = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x)
|
||||
mid_blocks_kv_cache_out = torch.zeros(12, 4, 2, x.size(2), 512, 2).to(x)
|
||||
up_blocks_kv_cache_out = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x)
|
||||
assert self.estimator.execute_v2([x.contiguous().data_ptr(),
|
||||
mask.contiguous().data_ptr(),
|
||||
mu.contiguous().data_ptr(),
|
||||
t.contiguous().data_ptr(),
|
||||
spks.contiguous().data_ptr(),
|
||||
cond.contiguous().data_ptr(),
|
||||
cache['down_blocks_conv_cache'].contiguous().data_ptr(),
|
||||
cache['down_blocks_kv_cache'].contiguous().data_ptr(),
|
||||
cache['mid_blocks_conv_cache'].contiguous().data_ptr(),
|
||||
cache['mid_blocks_kv_cache'].contiguous().data_ptr(),
|
||||
cache['up_blocks_conv_cache'].contiguous().data_ptr(),
|
||||
cache['up_blocks_kv_cache'].contiguous().data_ptr(),
|
||||
cache['final_blocks_conv_cache'].contiguous().data_ptr(),
|
||||
x.data_ptr(),
|
||||
cache['down_blocks_conv_cache'].data_ptr(),
|
||||
down_blocks_kv_cache_out.data_ptr(),
|
||||
cache['mid_blocks_conv_cache'].data_ptr(),
|
||||
mid_blocks_kv_cache_out.data_ptr(),
|
||||
cache['up_blocks_conv_cache'].data_ptr(),
|
||||
up_blocks_kv_cache_out.data_ptr(),
|
||||
cache['final_blocks_conv_cache'].data_ptr()]) is True
|
||||
cache = (cache['down_blocks_conv_cache'],
|
||||
down_blocks_kv_cache_out,
|
||||
cache['mid_blocks_conv_cache'],
|
||||
mid_blocks_kv_cache_out,
|
||||
cache['up_blocks_conv_cache'],
|
||||
up_blocks_kv_cache_out,
|
||||
cache['final_blocks_conv_cache'])
|
||||
return x, cache
|
||||
|
||||
Reference in New Issue
Block a user