mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
add text_frontend arg
This commit is contained in:
@@ -137,6 +137,7 @@ import torchaudio
|
|||||||
```python
|
```python
|
||||||
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=True, load_onnx=False, load_trt=False)
|
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=True, load_onnx=False, load_trt=False)
|
||||||
|
|
||||||
|
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
||||||
# zero_shot usage
|
# zero_shot usage
|
||||||
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
|
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
|
||||||
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||||
|
|||||||
@@ -59,8 +59,8 @@ class CosyVoice:
|
|||||||
spks = list(self.frontend.spk2info.keys())
|
spks = list(self.frontend.spk2info.keys())
|
||||||
return spks
|
return spks
|
||||||
|
|
||||||
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0):
|
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
model_input = self.frontend.frontend_sft(i, spk_id)
|
model_input = self.frontend.frontend_sft(i, spk_id)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
@@ -70,9 +70,9 @@ class CosyVoice:
|
|||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0):
|
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||||
prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
if len(i) < 0.5 * len(prompt_text):
|
if len(i) < 0.5 * len(prompt_text):
|
||||||
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
||||||
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
|
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
|
||||||
@@ -84,10 +84,10 @@ class CosyVoice:
|
|||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0):
|
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||||
if self.frontend.instruct is True and isinstance(self.model, CosyVoiceModel):
|
if self.frontend.instruct is True and isinstance(self.model, CosyVoiceModel):
|
||||||
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
@@ -97,12 +97,12 @@ class CosyVoice:
|
|||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0):
|
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
||||||
assert isinstance(self.model, CosyVoiceModel)
|
assert isinstance(self.model, CosyVoiceModel)
|
||||||
if self.frontend.instruct is False:
|
if self.frontend.instruct is False:
|
||||||
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
||||||
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
@@ -112,9 +112,9 @@ class CosyVoice:
|
|||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0):
|
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||||
assert isinstance(self.model, CosyVoice2Model)
|
assert isinstance(self.model, CosyVoice2Model)
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
|
|||||||
@@ -107,12 +107,10 @@ class CosyVoiceFrontEnd:
|
|||||||
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
||||||
return speech_feat, speech_feat_len
|
return speech_feat, speech_feat_len
|
||||||
|
|
||||||
def text_normalize(self, text, split=True):
|
def text_normalize(self, text, split=True, text_frontend=True):
|
||||||
|
if text_frontend is False:
|
||||||
|
return [text] if split is True else text
|
||||||
text = text.strip()
|
text = text.strip()
|
||||||
# NOTE(lyuxiang.lx) move this judgement into ttsfrd in the future
|
|
||||||
for token in self.tokenizer.special_tokens['additional_special_tokens']:
|
|
||||||
if token in text:
|
|
||||||
return text if split is False else [text]
|
|
||||||
if contains_chinese(text):
|
if contains_chinese(text):
|
||||||
if self.use_ttsfrd:
|
if self.use_ttsfrd:
|
||||||
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
||||||
|
|||||||
Reference in New Issue
Block a user