mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
Merge pull request #356 from MiXaiLL76/main
Implemented fast processing of extract_embedding
This commit is contained in:
@@ -13,58 +13,82 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
import argparse
|
import argparse
|
||||||
|
import os
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
|
||||||
|
import onnxruntime
|
||||||
import torch
|
import torch
|
||||||
import torchaudio
|
import torchaudio
|
||||||
from tqdm import tqdm
|
|
||||||
import onnxruntime
|
|
||||||
import torchaudio.compliance.kaldi as kaldi
|
import torchaudio.compliance.kaldi as kaldi
|
||||||
|
from tqdm import tqdm
|
||||||
|
from itertools import repeat
|
||||||
|
|
||||||
|
|
||||||
|
def extract_embedding(utt: str, wav_file: str, ort_session: onnxruntime.InferenceSession):
|
||||||
|
audio, sample_rate = torchaudio.load(wav_file)
|
||||||
|
if sample_rate != 16000:
|
||||||
|
audio = torchaudio.transforms.Resample(
|
||||||
|
orig_freq=sample_rate, new_freq=16000
|
||||||
|
)(audio)
|
||||||
|
feat = kaldi.fbank(audio, num_mel_bins=80, dither=0, sample_frequency=16000)
|
||||||
|
feat = feat - feat.mean(dim=0, keepdim=True)
|
||||||
|
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
||||||
|
return (utt, embedding)
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
def main(args):
|
||||||
utt2wav, utt2spk = {}, {}
|
utt2wav, utt2spk = {}, {}
|
||||||
with open('{}/wav.scp'.format(args.dir)) as f:
|
with open("{}/wav.scp".format(args.dir)) as f:
|
||||||
for l in f:
|
for l in f:
|
||||||
l = l.replace('\n', '').split()
|
l = l.replace("\n", "").split()
|
||||||
utt2wav[l[0]] = l[1]
|
utt2wav[l[0]] = l[1]
|
||||||
with open('{}/utt2spk'.format(args.dir)) as f:
|
with open("{}/utt2spk".format(args.dir)) as f:
|
||||||
for l in f:
|
for l in f:
|
||||||
l = l.replace('\n', '').split()
|
l = l.replace("\n", "").split()
|
||||||
utt2spk[l[0]] = l[1]
|
utt2spk[l[0]] = l[1]
|
||||||
|
|
||||||
|
assert os.path.exists(args.onnx_path), "onnx_path not exists"
|
||||||
|
|
||||||
option = onnxruntime.SessionOptions()
|
option = onnxruntime.SessionOptions()
|
||||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
option.graph_optimization_level = (
|
||||||
|
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||||
|
)
|
||||||
option.intra_op_num_threads = 1
|
option.intra_op_num_threads = 1
|
||||||
providers = ["CPUExecutionProvider"]
|
providers = ["CPUExecutionProvider"]
|
||||||
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
ort_session = onnxruntime.InferenceSession(
|
||||||
|
args.onnx_path, sess_options=option, providers=providers
|
||||||
|
)
|
||||||
|
|
||||||
|
all_utt = utt2wav.keys()
|
||||||
|
|
||||||
|
with ThreadPoolExecutor(max_workers=args.num_thread) as executor:
|
||||||
|
results = list(
|
||||||
|
tqdm(
|
||||||
|
executor.map(extract_embedding, all_utt, [utt2wav[utt] for utt in all_utt], repeat(ort_session)),
|
||||||
|
total=len(utt2wav),
|
||||||
|
desc="Process data: "
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
utt2embedding, spk2embedding = {}, {}
|
utt2embedding, spk2embedding = {}, {}
|
||||||
for utt in tqdm(utt2wav.keys()):
|
for utt, embedding in results:
|
||||||
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
|
||||||
if sample_rate != 16000:
|
|
||||||
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
|
||||||
feat = kaldi.fbank(audio,
|
|
||||||
num_mel_bins=80,
|
|
||||||
dither=0,
|
|
||||||
sample_frequency=16000)
|
|
||||||
feat = feat - feat.mean(dim=0, keepdim=True)
|
|
||||||
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
|
||||||
utt2embedding[utt] = embedding
|
utt2embedding[utt] = embedding
|
||||||
spk = utt2spk[utt]
|
spk = utt2spk[utt]
|
||||||
if spk not in spk2embedding:
|
if spk not in spk2embedding:
|
||||||
spk2embedding[spk] = []
|
spk2embedding[spk] = []
|
||||||
spk2embedding[spk].append(embedding)
|
spk2embedding[spk].append(embedding)
|
||||||
|
|
||||||
for k, v in spk2embedding.items():
|
for k, v in spk2embedding.items():
|
||||||
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
||||||
|
|
||||||
torch.save(utt2embedding, '{}/utt2embedding.pt'.format(args.dir))
|
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
||||||
torch.save(spk2embedding, '{}/spk2embedding.pt'.format(args.dir))
|
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--dir',
|
parser.add_argument("--dir", type=str)
|
||||||
type=str)
|
parser.add_argument("--onnx_path", type=str)
|
||||||
parser.add_argument('--onnx_path',
|
parser.add_argument("--num_thread", type=int, default=8)
|
||||||
type=str)
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
main(args)
|
main(args)
|
||||||
|
|||||||
Reference in New Issue
Block a user