This commit is contained in:
lyuxiang.lx
2024-12-12 18:48:25 +08:00
parent c693039d14
commit 2511a49a72
4 changed files with 18 additions and 33 deletions

View File

@@ -124,7 +124,7 @@ from cosyvoice.utils.file_utils import load_wav
import torchaudio import torchaudio
## cosyvoice2 usage ## cosyvoice2 usage
cosyvoice2 = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=True, load_onnx=False, load_trt=False) cosyvoice2 = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=False, load_onnx=False, load_trt=False)
# sft usage # sft usage
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000) prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
for i, j in enumerate(cosyvoice2.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=True)): for i, j in enumerate(cosyvoice2.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=True)):

View File

@@ -287,8 +287,6 @@ class CosyVoice2Model:
def load(self, llm_model, flow_model, hift_model): def load(self, llm_model, flow_model, hift_model):
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True) self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
self.llm.to(self.device).eval() self.llm.to(self.device).eval()
if self.fp16 is True:
self.llm.half()
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True) self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
self.flow.to(self.device).eval() self.flow.to(self.device).eval()
self.flow.decoder.fp16 = False self.flow.decoder.fp16 = False
@@ -319,8 +317,6 @@ class CosyVoice2Model:
self.flow.decoder.fp16 = True self.flow.decoder.fp16 = True
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid): def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
if self.fp16 is True:
llm_embedding = llm_embedding.half()
with self.llm_context: with self.llm_context:
for i in self.llm.inference(text=text.to(self.device), for i in self.llm.inference(text=text.to(self.device),
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device), text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),

View File

@@ -136,41 +136,26 @@ class ConditionalCFM(BASECFM):
'mask': mask.cpu().numpy(), 'mask': mask.cpu().numpy(),
'mu': mu.cpu().numpy(), 'mu': mu.cpu().numpy(),
't': t.cpu().numpy(), 't': t.cpu().numpy(),
'spk': spks.cpu().numpy(), 'spks': spks.cpu().numpy(),
'cond': cond.cpu().numpy(), 'cond': cond.cpu().numpy()
'mask_rand': torch.randn(1, 1, 1).numpy()
} }
output = self.estimator.run(None, ort_inputs)[0] output = self.estimator.run(None, ort_inputs)[0]
return torch.tensor(output, dtype=x.dtype, device=x.device) return torch.tensor(output, dtype=x.dtype, device=x.device)
else: else:
if not x.is_contiguous():
x = x.contiguous()
if not mask.is_contiguous():
mask = mask.contiguous()
if not mu.is_contiguous():
mu = mu.contiguous()
if not t.is_contiguous():
t = t.contiguous()
if not spks.is_contiguous():
spks = spks.contiguous()
if not cond.is_contiguous():
cond = cond.contiguous()
self.estimator.set_input_shape('x', (2, 80, x.size(2))) self.estimator.set_input_shape('x', (2, 80, x.size(2)))
self.estimator.set_input_shape('mask', (2, 1, x.size(2))) self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
self.estimator.set_input_shape('mu', (2, 80, x.size(2))) self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
self.estimator.set_input_shape('t', (2,)) self.estimator.set_input_shape('t', (2,))
self.estimator.set_input_shape('spk', (2, 80)) self.estimator.set_input_shape('spks', (2, 80))
self.estimator.set_input_shape('cond', (2, 80, x.size(2))) self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
self.estimator.set_input_shape('mask_rand', (1, 1, 1))
# run trt engine # run trt engine
self.estimator.execute_v2([x.data_ptr(), self.estimator.execute_v2([x.contiguous().data_ptr(),
mask.data_ptr(), mask.contiguous().data_ptr(),
mu.data_ptr(), mu.contiguous().data_ptr(),
t.data_ptr(), t.contiguous().data_ptr(),
spks.data_ptr(), spks.contiguous().data_ptr(),
cond.data_ptr(), cond.contiguous().data_ptr(),
torch.randn(1, 1, 1).to(x.device).data_ptr(), x.data_ptr()])
x.data_ptr()])
return x return x
def compute_loss(self, x1, mask, mu, spks=None, cond=None): def compute_loss(self, x1, mask, mu, spks=None, cond=None):
@@ -241,7 +226,7 @@ class CausalConditionalCFM(ConditionalCFM):
""" """
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device) * temperature z = self.rand_noise[:, :, :mu.size(2)].to(mu.device) * temperature
if self.sp16 is True: if self.fp16 is True:
z = z.half() z = z.half()
# fix prompt and overlap part mu and z # fix prompt and overlap part mu and z
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype) t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)

View File

@@ -1,4 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/cu121 --extra-index-url https://download.pytorch.org/whl/cu121
conformer==0.3.2
deepspeed==0.14.2; sys_platform == 'linux' deepspeed==0.14.2; sys_platform == 'linux'
diffusers==0.27.2 diffusers==0.27.2
gdown==5.1.0 gdown==5.1.0
@@ -16,8 +17,8 @@ modelscope==1.15.0
networkx==3.1 networkx==3.1
omegaconf==2.3.0 omegaconf==2.3.0
onnx==1.16.0 onnx==1.16.0
onnxruntime-gpu==1.16.0; sys_platform == 'linux' onnxruntime-gpu==1.18.0; sys_platform == 'linux'
onnxruntime==1.16.0; sys_platform == 'darwin' or sys_platform == 'windows' onnxruntime==1.18.0; sys_platform == 'darwin' or sys_platform == 'windows'
openai-whisper==20231117 openai-whisper==20231117
protobuf==4.25 protobuf==4.25
pydantic==2.7.0 pydantic==2.7.0
@@ -25,8 +26,11 @@ rich==13.7.1
soundfile==0.12.1 soundfile==0.12.1
tensorboard==2.14.0 tensorboard==2.14.0
tensorrt-cu12==10.0.1 tensorrt-cu12==10.0.1
tensorrt-cu12-bindings==10.0.1
tensorrt-cu12-libs==10.0.1
torch==2.3.1 torch==2.3.1
torchaudio==2.3.1 torchaudio==2.3.1
transformers==4.40.1
uvicorn==0.30.0 uvicorn==0.30.0
wget==3.2 wget==3.2
fastapi==0.111.0 fastapi==0.111.0