diff --git a/.gitignore b/.gitignore index 139a40f..12b53ef 100644 --- a/.gitignore +++ b/.gitignore @@ -43,6 +43,8 @@ compile_commands.json # train/inference files *.wav +*.m4a +*.aac *.pt pretrained_models/* *_pb2_grpc.py diff --git a/README.md b/README.md index d5a9934..4d1a7f7 100644 --- a/README.md +++ b/README.md @@ -116,23 +116,24 @@ import torchaudio cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT') # sft usage print(cosyvoice.list_avaliable_spks()) -output = cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女') -torchaudio.save('sft.wav', output['tts_speech'], 22050) +# change stream=True for chunk stream inference +for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)): + torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], 22050) cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M') # zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000) -output = cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k) -torchaudio.save('zero_shot.wav', output['tts_speech'], 22050) +for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)): + torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], 22050) # cross_lingual usage prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000) -output = cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k) -torchaudio.save('cross_lingual.wav', output['tts_speech'], 22050) +for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)): + torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], 22050) cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct') # instruct usage, support [laughter][breath] -output = cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的勇气智慧。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.') -torchaudio.save('instruct.wav', output['tts_speech'], 22050) +for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的勇气智慧。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)): + torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], 22050) ``` **Start web demo** @@ -163,10 +164,10 @@ docker build -t cosyvoice:v1.0 . # change iic/CosyVoice-300M to iic/CosyVoice-300M-Instruct if you want to use instruct inference # for grpc usage docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice-300M && sleep infinity" -python3 grpc/client.py --port 50000 --mode +cd grpc && python3 client.py --port 50000 --mode # for fastapi usage docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && MODEL_DIR=iic/CosyVoice-300M fastapi dev --port 50000 server.py && sleep infinity" -python3 fastapi/client.py --port 50000 --mode +cd fastapi && python3 client.py --port 50000 --mode ``` ## Discussion & Communication diff --git a/cosyvoice/bin/export_jit.py b/cosyvoice/bin/export_jit.py new file mode 100644 index 0000000..1eceb1d --- /dev/null +++ b/cosyvoice/bin/export_jit.py @@ -0,0 +1,64 @@ +# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import argparse +import logging +logging.getLogger('matplotlib').setLevel(logging.WARNING) +import os +import sys +ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) +sys.path.append('{}/../..'.format(ROOT_DIR)) +sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR)) +import torch +from cosyvoice.cli.cosyvoice import CosyVoice + +def get_args(): + parser = argparse.ArgumentParser(description='export your model for deployment') + parser.add_argument('--model_dir', + type=str, + default='pretrained_models/CosyVoice-300M', + help='local path') + args = parser.parse_args() + print(args) + return args + +def main(): + args = get_args() + logging.basicConfig(level=logging.DEBUG, + format='%(asctime)s %(levelname)s %(message)s') + + torch._C._jit_set_fusion_strategy([('STATIC', 1)]) + torch._C._jit_set_profiling_mode(False) + torch._C._jit_set_profiling_executor(False) + + cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False) + + # 1. export llm text_encoder + llm_text_encoder = cosyvoice.model.llm.text_encoder.half() + script = torch.jit.script(llm_text_encoder) + script = torch.jit.freeze(script) + script = torch.jit.optimize_for_inference(script) + script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir)) + + # 2. export llm llm + llm_llm = cosyvoice.model.llm.llm.half() + script = torch.jit.script(llm_llm) + script = torch.jit.freeze(script, preserved_attrs=['forward_chunk']) + script = torch.jit.optimize_for_inference(script) + script.save('{}/llm.llm.fp16.zip'.format(args.model_dir)) + +if __name__ == '__main__': + main() diff --git a/cosyvoice/bin/export_trt.py b/cosyvoice/bin/export_trt.py new file mode 100644 index 0000000..e6d480c --- /dev/null +++ b/cosyvoice/bin/export_trt.py @@ -0,0 +1,8 @@ +# TODO 跟export_jit一样的逻辑,完成flow部分的estimator的onnx导出。 +# tensorrt的安装方式,再这里写一下步骤提示如下,如果没有安装,那么不要执行这个脚本,提示用户先安装,不给选择 +try: + import tensorrt +except ImportError: + print('step1, 下载\n step2. 解压,安装whl,') +# 安装命令里tensosrt的根目录用环境变量导入,比如os.environ['tensorrt_root_dir']/bin/exetrace,然后python里subprocess里执行导出命令 +# 后面我会在run.sh里写好执行命令 tensorrt_root_dir=xxxx python cosyvoice/bin/export_trt.py --model_dir xxx \ No newline at end of file diff --git a/cosyvoice/bin/inference.py b/cosyvoice/bin/inference.py index 6b777fa..d00d67b 100644 --- a/cosyvoice/bin/inference.py +++ b/cosyvoice/bin/inference.py @@ -100,10 +100,13 @@ def main(): 'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len, 'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len, 'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding} - model_output = model.inference(**model_input) + tts_speeches = [] + for model_output in model.inference(**model_input): + tts_speeches.append(model_output['tts_speech']) + tts_speeches = torch.concat(tts_speeches, dim=1) tts_key = '{}_{}'.format(utts[0], tts_index[0]) tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key)) - torchaudio.save(tts_fn, model_output['tts_speech'], sample_rate=22050) + torchaudio.save(tts_fn, tts_speeches, sample_rate=22050) f.write('{} {}\n'.format(tts_key, tts_fn)) f.flush() f.close() diff --git a/cosyvoice/cli/cosyvoice.py b/cosyvoice/cli/cosyvoice.py index ea8c448..49fe15f 100644 --- a/cosyvoice/cli/cosyvoice.py +++ b/cosyvoice/cli/cosyvoice.py @@ -12,15 +12,16 @@ # See the License for the specific language governing permissions and # limitations under the License. import os -import torch +import time from hyperpyyaml import load_hyperpyyaml from modelscope import snapshot_download from cosyvoice.cli.frontend import CosyVoiceFrontEnd from cosyvoice.cli.model import CosyVoiceModel +from cosyvoice.utils.file_utils import logging class CosyVoice: - def __init__(self, model_dir): + def __init__(self, model_dir, load_jit=True): instruct = True if '-Instruct' in model_dir else False self.model_dir = model_dir if not os.path.exists(model_dir): @@ -38,46 +39,61 @@ class CosyVoice: self.model.load('{}/llm.pt'.format(model_dir), '{}/flow.pt'.format(model_dir), '{}/hift.pt'.format(model_dir)) + if load_jit: + self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir), + '{}/llm.llm.fp16.zip'.format(model_dir)) del configs def list_avaliable_spks(self): spks = list(self.frontend.spk2info.keys()) return spks - def inference_sft(self, tts_text, spk_id): - tts_speeches = [] + def inference_sft(self, tts_text, spk_id, stream=False): for i in self.frontend.text_normalize(tts_text, split=True): model_input = self.frontend.frontend_sft(i, spk_id) - model_output = self.model.inference(**model_input) - tts_speeches.append(model_output['tts_speech']) - return {'tts_speech': torch.concat(tts_speeches, dim=1)} + start_time = time.time() + logging.info('synthesis text {}'.format(i)) + for model_output in self.model.inference(**model_input, stream=stream): + speech_len = model_output['tts_speech'].shape[1] / 22050 + logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) + yield model_output + start_time = time.time() - def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k): + def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False): prompt_text = self.frontend.text_normalize(prompt_text, split=False) - tts_speeches = [] for i in self.frontend.text_normalize(tts_text, split=True): model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k) - model_output = self.model.inference(**model_input) - tts_speeches.append(model_output['tts_speech']) - return {'tts_speech': torch.concat(tts_speeches, dim=1)} + start_time = time.time() + logging.info('synthesis text {}'.format(i)) + for model_output in self.model.inference(**model_input, stream=stream): + speech_len = model_output['tts_speech'].shape[1] / 22050 + logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) + yield model_output + start_time = time.time() - def inference_cross_lingual(self, tts_text, prompt_speech_16k): + def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False): if self.frontend.instruct is True: raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir)) - tts_speeches = [] for i in self.frontend.text_normalize(tts_text, split=True): model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k) - model_output = self.model.inference(**model_input) - tts_speeches.append(model_output['tts_speech']) - return {'tts_speech': torch.concat(tts_speeches, dim=1)} + start_time = time.time() + logging.info('synthesis text {}'.format(i)) + for model_output in self.model.inference(**model_input, stream=stream): + speech_len = model_output['tts_speech'].shape[1] / 22050 + logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) + yield model_output + start_time = time.time() - def inference_instruct(self, tts_text, spk_id, instruct_text): + def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False): if self.frontend.instruct is False: raise ValueError('{} do not support instruct inference'.format(self.model_dir)) instruct_text = self.frontend.text_normalize(instruct_text, split=False) - tts_speeches = [] for i in self.frontend.text_normalize(tts_text, split=True): model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text) - model_output = self.model.inference(**model_input) - tts_speeches.append(model_output['tts_speech']) - return {'tts_speech': torch.concat(tts_speeches, dim=1)} + start_time = time.time() + logging.info('synthesis text {}'.format(i)) + for model_output in self.model.inference(**model_input, stream=stream): + speech_len = model_output['tts_speech'].shape[1] / 22050 + logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) + yield model_output + start_time = time.time() diff --git a/cosyvoice/cli/model.py b/cosyvoice/cli/model.py index f4625e3..99ccbe5 100644 --- a/cosyvoice/cli/model.py +++ b/cosyvoice/cli/model.py @@ -12,6 +12,13 @@ # See the License for the specific language governing permissions and # limitations under the License. import torch +import numpy as np +import threading +import time +from contextlib import nullcontext +import uuid +from cosyvoice.utils.common import fade_in_out + class CosyVoiceModel: @@ -23,38 +30,143 @@ class CosyVoiceModel: self.llm = llm self.flow = flow self.hift = hift + self.token_min_hop_len = 100 + self.token_max_hop_len = 200 + self.token_overlap_len = 20 + # mel fade in out + self.mel_overlap_len = 34 + self.mel_window = np.hamming(2 * self.mel_overlap_len) + # hift cache + self.mel_cache_len = 20 + self.source_cache_len = int(self.mel_cache_len * 256) + # rtf and decoding related + self.stream_scale_factor = 1 + assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf' + self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext() + self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext() + self.lock = threading.Lock() + # dict used to store session related variable + self.tts_speech_token_dict = {} + self.llm_end_dict = {} + self.mel_overlap_dict = {} + self.hift_cache_dict = {} def load(self, llm_model, flow_model, hift_model): self.llm.load_state_dict(torch.load(llm_model, map_location=self.device)) self.llm.to(self.device).eval() + self.llm.half() self.flow.load_state_dict(torch.load(flow_model, map_location=self.device)) self.flow.to(self.device).eval() self.hift.load_state_dict(torch.load(hift_model, map_location=self.device)) self.hift.to(self.device).eval() - def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192), - prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32), - llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32), - flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32), - prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)): - tts_speech_token = self.llm.inference(text=text.to(self.device), - text_len=text_len.to(self.device), - prompt_text=prompt_text.to(self.device), - prompt_text_len=prompt_text_len.to(self.device), - prompt_speech_token=llm_prompt_speech_token.to(self.device), - prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device), - embedding=llm_embedding.to(self.device), - beam_size=1, - sampling=25, - max_token_text_ratio=30, - min_token_text_ratio=3) - tts_mel = self.flow.inference(token=tts_speech_token, - token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device), - prompt_token=flow_prompt_speech_token.to(self.device), - prompt_token_len=flow_prompt_speech_token_len.to(self.device), - prompt_feat=prompt_speech_feat.to(self.device), - prompt_feat_len=prompt_speech_feat_len.to(self.device), - embedding=flow_embedding.to(self.device)) - tts_speech = self.hift.inference(mel=tts_mel).cpu() - torch.cuda.empty_cache() - return {'tts_speech': tts_speech} + def load_jit(self, llm_text_encoder_model, llm_llm_model): + llm_text_encoder = torch.jit.load(llm_text_encoder_model) + self.llm.text_encoder = llm_text_encoder + llm_llm = torch.jit.load(llm_llm_model) + self.llm.llm = llm_llm + + def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid): + with self.llm_context: + for i in self.llm.inference(text=text.to(self.device), + text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device), + prompt_text=prompt_text.to(self.device), + prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device), + prompt_speech_token=llm_prompt_speech_token.to(self.device), + prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device), + embedding=llm_embedding.to(self.device).half(), + sampling=25, + max_token_text_ratio=30, + min_token_text_ratio=3): + self.tts_speech_token_dict[uuid].append(i) + self.llm_end_dict[uuid] = True + + def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False): + with self.flow_hift_context: + tts_mel = self.flow.inference(token=token.to(self.device), + token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device), + prompt_token=prompt_token.to(self.device), + prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device), + prompt_feat=prompt_feat.to(self.device), + prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device), + embedding=embedding.to(self.device)) + # mel overlap fade in out + if self.mel_overlap_dict[uuid] is not None: + tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window) + # append hift cache + if self.hift_cache_dict[uuid] is not None: + hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source'] + tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2) + else: + hift_cache_source = torch.zeros(1, 1, 0) + # keep overlap mel and hift cache + if finalize is False: + self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:] + tts_mel = tts_mel[:, :, :-self.mel_overlap_len] + tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source) + self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]} + tts_speech = tts_speech[:, :-self.source_cache_len] + else: + tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source) + return tts_speech + + def inference(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192), + prompt_text=torch.zeros(1, 0, dtype=torch.int32), + llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), + flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), + prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, **kwargs): + # this_uuid is used to track variables related to this inference thread + this_uuid = str(uuid.uuid1()) + with self.lock: + self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid], self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = [], False, None, None + p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid)) + p.start() + if stream is True: + token_hop_len = self.token_min_hop_len + while True: + time.sleep(0.1) + if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len: + this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len], dim=1) + with self.flow_hift_context: + this_tts_speech = self.token2wav(token=this_tts_speech_token, + prompt_token=flow_prompt_speech_token, + prompt_feat=prompt_speech_feat, + embedding=flow_embedding, + uuid=this_uuid, + finalize=False) + yield {'tts_speech': this_tts_speech.cpu()} + with self.lock: + self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:] + # increase token_hop_len for better speech quality + token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor)) + if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len: + break + p.join() + # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None + this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1) + with self.flow_hift_context: + this_tts_speech = self.token2wav(token=this_tts_speech_token, + prompt_token=flow_prompt_speech_token, + prompt_feat=prompt_speech_feat, + embedding=flow_embedding, + uuid=this_uuid, + finalize=True) + yield {'tts_speech': this_tts_speech.cpu()} + else: + # deal with all tokens + p.join() + this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1) + with self.flow_hift_context: + this_tts_speech = self.token2wav(token=this_tts_speech_token, + prompt_token=flow_prompt_speech_token, + prompt_feat=prompt_speech_feat, + embedding=flow_embedding, + uuid=this_uuid, + finalize=True) + yield {'tts_speech': this_tts_speech.cpu()} + with self.lock: + self.tts_speech_token_dict.pop(this_uuid) + self.llm_end_dict.pop(this_uuid) + self.mel_overlap_dict.pop(this_uuid) + self.hift_cache_dict.pop(this_uuid) + torch.cuda.synchronize() diff --git a/cosyvoice/flow/flow.py b/cosyvoice/flow/flow.py index 90a45b4..8cbf013 100644 --- a/cosyvoice/flow/flow.py +++ b/cosyvoice/flow/flow.py @@ -111,6 +111,7 @@ class MaskedDiffWithXvec(torch.nn.Module): embedding = self.spk_embed_affine_layer(embedding) # concat text and prompt_text + token_len1, token_len2 = prompt_token.shape[1], token.shape[1] token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding) token = self.input_embedding(torch.clamp(token, min=0)) * mask @@ -118,17 +119,16 @@ class MaskedDiffWithXvec(torch.nn.Module): # text encode h, h_lengths = self.encoder(token, token_len) h = self.encoder_proj(h) - feat_len = (token_len / 50 * 22050 / 256).int() - h, h_lengths = self.length_regulator(h, feat_len) + mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / 50 * 22050 / 256) + h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2) # get conditions - conds = torch.zeros([1, feat_len.max().item(), self.output_size], device=token.device) - if prompt_feat.shape[1] != 0: - for i, j in enumerate(prompt_feat_len): - conds[i, :j] = prompt_feat[i] + conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device) + conds[:, :mel_len1] = prompt_feat conds = conds.transpose(1, 2) - mask = (~make_pad_mask(feat_len)).to(h) + # mask = (~make_pad_mask(feat_len)).to(h) + mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h) feat = self.decoder( mu=h.transpose(1, 2).contiguous(), mask=mask.unsqueeze(1), @@ -136,6 +136,6 @@ class MaskedDiffWithXvec(torch.nn.Module): cond=conds, n_timesteps=10 ) - if prompt_feat.shape[1] != 0: - feat = feat[:, :, prompt_feat.shape[1]:] + feat = feat[:, :, mel_len1:] + assert feat.shape[2] == mel_len2 return feat diff --git a/cosyvoice/flow/length_regulator.py b/cosyvoice/flow/length_regulator.py index 622f29a..26cb994 100755 --- a/cosyvoice/flow/length_regulator.py +++ b/cosyvoice/flow/length_regulator.py @@ -13,6 +13,7 @@ # limitations under the License. from typing import Tuple import torch.nn as nn +import torch from torch.nn import functional as F from cosyvoice.utils.mask import make_pad_mask @@ -43,7 +44,25 @@ class InterpolateRegulator(nn.Module): def forward(self, x, ylens=None): # x in (B, T, D) mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1) - x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest') + x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='linear') out = self.model(x).transpose(1, 2).contiguous() olens = ylens return out * mask, olens + + def inference(self, x1, x2, mel_len1, mel_len2): + # in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel + # x in (B, T, D) + if x2.shape[1] > 40: + x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=34, mode='linear') + x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - 34 * 2, mode='linear') + x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=34, mode='linear') + x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2) + else: + x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear') + if x1.shape[1] != 0: + x1 = F.interpolate(x1.transpose(1, 2).contiguous(), size=mel_len1, mode='linear') + x = torch.concat([x1, x2], dim=2) + else: + x = x2 + out = self.model(x).transpose(1, 2).contiguous() + return out, mel_len1 + mel_len2 diff --git a/cosyvoice/hifigan/generator.py b/cosyvoice/hifigan/generator.py index a45419b..fd61834 100644 --- a/cosyvoice/hifigan/generator.py +++ b/cosyvoice/hifigan/generator.py @@ -335,10 +335,14 @@ class HiFTGenerator(nn.Module): inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device)) return inverse_transform - def forward(self, x: torch.Tensor) -> torch.Tensor: + def forward(self, x: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor: f0 = self.f0_predictor(x) s = self._f02source(f0) + # use cache_source to avoid glitch + if cache_source.shape[2] == 0: + s[:, :, :cache_source.shape[2]] = cache_source + s_stft_real, s_stft_imag = self._stft(s.squeeze(1)) s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1) @@ -370,7 +374,7 @@ class HiFTGenerator(nn.Module): x = self._istft(magnitude, phase) x = torch.clamp(x, -self.audio_limit, self.audio_limit) - return x + return x, s def remove_weight_norm(self): print('Removing weight norm...') @@ -387,5 +391,5 @@ class HiFTGenerator(nn.Module): l.remove_weight_norm() @torch.inference_mode() - def inference(self, mel: torch.Tensor) -> torch.Tensor: - return self.forward(x=mel) + def inference(self, mel: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor: + return self.forward(x=mel, cache_source=cache_source) diff --git a/cosyvoice/llm/llm.py b/cosyvoice/llm/llm.py index 3b418c5..e073117 100644 --- a/cosyvoice/llm/llm.py +++ b/cosyvoice/llm/llm.py @@ -11,7 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -from typing import Dict, Optional, Union +from typing import Dict, Optional, Callable, List, Generator import torch from torch import nn import torch.nn.functional as F @@ -31,6 +31,7 @@ class TransformerLM(torch.nn.Module): speech_token_size: int, text_encoder: torch.nn.Module, llm: torch.nn.Module, + sampling: Callable, length_normalized_loss: bool = True, lsm_weight: float = 0.0, spk_embed_dim: int = 192, @@ -63,6 +64,9 @@ class TransformerLM(torch.nn.Module): self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size) self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size) + # 4. sampling method + self.sampling = sampling + def encode( self, text: torch.Tensor, @@ -132,14 +136,12 @@ class TransformerLM(torch.nn.Module): def sampling_ids( self, weighted_scores: torch.Tensor, - sampling: Union[bool, int, float] = True, - beam_size: int = 1, + decoded_tokens: List, + sampling: int, ignore_eos: bool = True, ): while True: - prob, indices = weighted_scores.softmax(dim=-1).topk(sampling) - top_ids = prob.multinomial(beam_size, replacement=True) - top_ids = indices[top_ids] + top_ids = self.sampling(weighted_scores, decoded_tokens, sampling) if (not ignore_eos) or (self.speech_token_size not in top_ids): break return top_ids @@ -154,11 +156,10 @@ class TransformerLM(torch.nn.Module): prompt_speech_token: torch.Tensor, prompt_speech_token_len: torch.Tensor, embedding: torch.Tensor, - beam_size: int = 1, sampling: int = 25, max_token_text_ratio: float = 20, min_token_text_ratio: float = 2, - ) -> torch.Tensor: + ) -> Generator[torch.Tensor, None, None]: device = text.device text = torch.concat([prompt_text, text], dim=1) text_len += prompt_text_len @@ -173,7 +174,7 @@ class TransformerLM(torch.nn.Module): embedding = self.spk_embed_affine_layer(embedding) embedding = embedding.unsqueeze(dim=1) else: - embedding = torch.zeros(1, 0, self.llm_input_size).to(device) + embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device) # 3. concat llm_input sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) @@ -181,7 +182,7 @@ class TransformerLM(torch.nn.Module): if prompt_speech_token_len != 0: prompt_speech_token_emb = self.speech_embedding(prompt_speech_token) else: - prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size).to(device) + prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device) lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1) # 4. cal min/max_length @@ -196,11 +197,11 @@ class TransformerLM(torch.nn.Module): y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=0, required_cache_size=-1, att_cache=att_cache, cnn_cache=cnn_cache, att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool)) logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1) - top_ids = self.sampling_ids(logp.squeeze(dim=0), sampling, beam_size, ignore_eos=True if i < min_len else False).item() + top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item() if top_ids == self.speech_token_size: break + # in stream mode, yield token one by one + yield torch.tensor([[top_ids]], dtype=torch.int64, device=device) out_tokens.append(top_ids) offset += lm_input.size(1) lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1) - - return torch.tensor([out_tokens], dtype=torch.int64, device=device) diff --git a/cosyvoice/transformer/attention.py b/cosyvoice/transformer/attention.py index cb6723a..8c0c098 100644 --- a/cosyvoice/transformer/attention.py +++ b/cosyvoice/transformer/attention.py @@ -222,7 +222,7 @@ class RelPositionMultiHeadedAttention(MultiHeadedAttention): torch.nn.init.xavier_uniform_(self.pos_bias_u) torch.nn.init.xavier_uniform_(self.pos_bias_v) - def rel_shift(self, x): + def rel_shift(self, x: torch.Tensor) -> torch.Tensor: """Compute relative positional encoding. Args: @@ -233,10 +233,14 @@ class RelPositionMultiHeadedAttention(MultiHeadedAttention): torch.Tensor: Output tensor. """ - zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype) + zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1), + device=x.device, + dtype=x.dtype) x_padded = torch.cat([zero_pad, x], dim=-1) - x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2)) + x_padded = x_padded.view(x.size()[0], + x.size()[1], + x.size(3) + 1, x.size(2)) x = x_padded[:, :, 1:].view_as(x)[ :, :, :, : x.size(-1) // 2 + 1 ] # only keep the positions from 0 to time2 diff --git a/cosyvoice/transformer/decoder.py b/cosyvoice/transformer/decoder.py index 961c875..98f3a66 100644 --- a/cosyvoice/transformer/decoder.py +++ b/cosyvoice/transformer/decoder.py @@ -174,7 +174,7 @@ class TransformerDecoder(torch.nn.Module): memory_mask) return x - @torch.jit.ignore(drop=True) + @torch.jit.unused def forward_layers_checkpointed(self, x: torch.Tensor, tgt_mask: torch.Tensor, memory: torch.Tensor, diff --git a/cosyvoice/transformer/embedding.py b/cosyvoice/transformer/embedding.py index 46130a5..e32cfc9 100644 --- a/cosyvoice/transformer/embedding.py +++ b/cosyvoice/transformer/embedding.py @@ -212,7 +212,7 @@ class EspnetRelPositionalEncoding(torch.nn.Module): """ - def __init__(self, d_model, dropout_rate, max_len=5000): + def __init__(self, d_model: int, dropout_rate: float, max_len: int=5000): """Construct an PositionalEncoding object.""" super(EspnetRelPositionalEncoding, self).__init__() self.d_model = d_model @@ -221,7 +221,7 @@ class EspnetRelPositionalEncoding(torch.nn.Module): self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, max_len)) - def extend_pe(self, x): + def extend_pe(self, x: torch.Tensor): """Reset the positional encodings.""" if self.pe is not None: # self.pe contains both positive and negative parts @@ -253,7 +253,8 @@ class EspnetRelPositionalEncoding(torch.nn.Module): pe = torch.cat([pe_positive, pe_negative], dim=1) self.pe = pe.to(device=x.device, dtype=x.dtype) - def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0): + def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \ + -> Tuple[torch.Tensor, torch.Tensor]: """Add positional encoding. Args: diff --git a/cosyvoice/transformer/encoder.py b/cosyvoice/transformer/encoder.py index b757b38..c5709d0 100644 --- a/cosyvoice/transformer/encoder.py +++ b/cosyvoice/transformer/encoder.py @@ -169,7 +169,7 @@ class BaseEncoder(torch.nn.Module): xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) return xs - @torch.jit.ignore(drop=True) + @torch.jit.unused def forward_layers_checkpointed(self, xs: torch.Tensor, chunk_masks: torch.Tensor, pos_emb: torch.Tensor, @@ -180,6 +180,7 @@ class BaseEncoder(torch.nn.Module): mask_pad) return xs + @torch.jit.export def forward_chunk( self, xs: torch.Tensor, @@ -270,6 +271,7 @@ class BaseEncoder(torch.nn.Module): return (xs, r_att_cache, r_cnn_cache) + @torch.jit.unused def forward_chunk_by_chunk( self, xs: torch.Tensor, diff --git a/cosyvoice/utils/common.py b/cosyvoice/utils/common.py index 6ec5e17..07e1f92 100644 --- a/cosyvoice/utils/common.py +++ b/cosyvoice/utils/common.py @@ -101,3 +101,39 @@ def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) + +# Repetition Aware Sampling in VALL-E 2 +def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1): + top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k) + rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item() + if rep_num >= win_size * tau_r: + top_ids = random_sampling(weighted_scores, decoded_tokens, sampling) + return top_ids + +def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25): + prob, indices = [], [] + cum_prob = 0.0 + sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True) + for i in range(len(sorted_idx)): + # sampling both top-p and numbers. + if cum_prob < top_p and len(prob) < top_k: + cum_prob += sorted_value[i] + prob.append(sorted_value[i]) + indices.append(sorted_idx[i]) + else: + break + prob = torch.tensor(prob).to(weighted_scores) + indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device) + top_ids = indices[prob.multinomial(1, replacement=True)] + return top_ids + +def random_sampling(weighted_scores, decoded_tokens, sampling): + top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True) + return top_ids + +def fade_in_out(fade_in_mel, fade_out_mel, window): + device = fade_in_mel.device + fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu() + mel_overlap_len = int(window.shape[0] / 2) + fade_in_mel[:, :, :mel_overlap_len] = fade_in_mel[:, :, :mel_overlap_len] * window[:mel_overlap_len] + fade_out_mel[:, :, -mel_overlap_len:] * window[mel_overlap_len:] + return fade_in_mel.to(device) diff --git a/cosyvoice/utils/file_utils.py b/cosyvoice/utils/file_utils.py index d4179e1..40e7b20 100644 --- a/cosyvoice/utils/file_utils.py +++ b/cosyvoice/utils/file_utils.py @@ -15,6 +15,10 @@ import json import torchaudio +import logging +logging.getLogger('matplotlib').setLevel(logging.WARNING) +logging.basicConfig(level=logging.DEBUG, + format='%(asctime)s %(levelname)s %(message)s') def read_lists(list_file): diff --git a/examples/libritts/cosyvoice/conf/cosyvoice.fromscratch.yaml b/examples/libritts/cosyvoice/conf/cosyvoice.fromscratch.yaml index 54b6e7b..25d7269 100644 --- a/examples/libritts/cosyvoice/conf/cosyvoice.fromscratch.yaml +++ b/examples/libritts/cosyvoice/conf/cosyvoice.fromscratch.yaml @@ -31,7 +31,7 @@ llm: !new:cosyvoice.llm.llm.TransformerLM num_blocks: 3 dropout_rate: 0.1 positional_dropout_rate: 0.1 - attention_dropout_rate: 0 + attention_dropout_rate: 0.0 normalize_before: True input_layer: 'linear' pos_enc_layer_type: 'rel_pos_espnet' @@ -49,11 +49,16 @@ llm: !new:cosyvoice.llm.llm.TransformerLM num_blocks: 7 dropout_rate: 0.1 positional_dropout_rate: 0.1 - attention_dropout_rate: 0 + attention_dropout_rate: 0.0 input_layer: 'linear_legacy' pos_enc_layer_type: 'rel_pos_espnet' selfattention_layer_type: 'rel_selfattn' static_chunk_size: 1 + sampling: !name:cosyvoice.utils.common.ras_sampling + top_p: 0.8 + top_k: 25 + win_size: 10 + tau_r: 0.1 flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec input_size: 512 @@ -97,7 +102,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec in_channels: 320 out_channels: 80 channels: [256, 256] - dropout: 0 + dropout: 0.0 attention_head_dim: 64 n_blocks: 4 num_mid_blocks: 8 diff --git a/examples/libritts/cosyvoice/conf/cosyvoice.yaml b/examples/libritts/cosyvoice/conf/cosyvoice.yaml index f43af16..bca3898 100644 --- a/examples/libritts/cosyvoice/conf/cosyvoice.yaml +++ b/examples/libritts/cosyvoice/conf/cosyvoice.yaml @@ -31,7 +31,7 @@ llm: !new:cosyvoice.llm.llm.TransformerLM num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 - attention_dropout_rate: 0 + attention_dropout_rate: 0.0 normalize_before: True input_layer: 'linear' pos_enc_layer_type: 'rel_pos_espnet' @@ -49,11 +49,16 @@ llm: !new:cosyvoice.llm.llm.TransformerLM num_blocks: 14 dropout_rate: 0.1 positional_dropout_rate: 0.1 - attention_dropout_rate: 0 + attention_dropout_rate: 0.0 input_layer: 'linear_legacy' pos_enc_layer_type: 'rel_pos_espnet' selfattention_layer_type: 'rel_selfattn' static_chunk_size: 1 + sampling: !name:cosyvoice.utils.common.ras_sampling + top_p: 0.8 + top_k: 25 + win_size: 10 + tau_r: 0.1 flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec input_size: 512 @@ -97,7 +102,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec in_channels: 320 out_channels: 80 channels: [256, 256] - dropout: 0 + dropout: 0.0 attention_head_dim: 64 n_blocks: 4 num_mid_blocks: 12 diff --git a/runtime/python/grpc/client.py b/runtime/python/grpc/client.py index 9d1c27d..b7384ee 100644 --- a/runtime/python/grpc/client.py +++ b/runtime/python/grpc/client.py @@ -61,8 +61,11 @@ def main(): request.instruct_request.CopyFrom(instruct_request) response = stub.Inference(request) + tts_audio = b'' + for r in response: + tts_audio += r.tts_audio + tts_speech = torch.from_numpy(np.array(np.frombuffer(tts_audio, dtype=np.int16))).unsqueeze(dim=0) logging.info('save response to {}'.format(args.tts_wav)) - tts_speech = torch.from_numpy(np.array(np.frombuffer(response.tts_audio, dtype=np.int16))).unsqueeze(dim=0) torchaudio.save(args.tts_wav, tts_speech, target_sr) logging.info('get response') diff --git a/runtime/python/grpc/cosyvoice.proto b/runtime/python/grpc/cosyvoice.proto index babf3e7..fe0c3ad 100644 --- a/runtime/python/grpc/cosyvoice.proto +++ b/runtime/python/grpc/cosyvoice.proto @@ -4,7 +4,7 @@ package cosyvoice; option go_package = "protos/"; service CosyVoice{ - rpc Inference(Request) returns (Response) {} + rpc Inference(Request) returns (stream Response) {} } message Request{ diff --git a/runtime/python/grpc/server.py b/runtime/python/grpc/server.py index 0329be7..3c2712a 100644 --- a/runtime/python/grpc/server.py +++ b/runtime/python/grpc/server.py @@ -54,9 +54,10 @@ class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer): model_output = self.cosyvoice.inference_instruct(request.instruct_request.tts_text, request.instruct_request.spk_id, request.instruct_request.instruct_text) logging.info('send inference response') - response = cosyvoice_pb2.Response() - response.tts_audio = (model_output['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes() - return response + for i in model_output: + response = cosyvoice_pb2.Response() + response.tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes() + yield response def main(): grpcServer = grpc.server(futures.ThreadPoolExecutor(max_workers=args.max_conc), maximum_concurrent_rpcs=args.max_conc) diff --git a/webui.py b/webui.py index 39cf9a8..3bef07b 100644 --- a/webui.py +++ b/webui.py @@ -24,14 +24,8 @@ import torchaudio import random import librosa -import logging -logging.getLogger('matplotlib').setLevel(logging.WARNING) - from cosyvoice.cli.cosyvoice import CosyVoice -from cosyvoice.utils.file_utils import load_wav, speed_change - -logging.basicConfig(level=logging.DEBUG, - format='%(asctime)s %(levelname)s %(message)s') +from cosyvoice.utils.file_utils import load_wav, speed_change, logging def generate_seed(): seed = random.randint(1, 100000000) @@ -63,10 +57,11 @@ instruct_dict = {'预训练音色': '1. 选择预训练音色\n2. 点击生成 '3s极速复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入prompt文本\n3. 点击生成音频按钮', '跨语种复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 点击生成音频按钮', '自然语言控制': '1. 选择预训练音色\n2. 输入instruct文本\n3. 点击生成音频按钮'} +stream_mode_list = [('否', False), ('是', True)] def change_instruction(mode_checkbox_group): return instruct_dict[mode_checkbox_group] -def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, speed_factor): +def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, stream, speed_factor): if prompt_wav_upload is not None: prompt_wav = prompt_wav_upload elif prompt_wav_record is not None: @@ -117,32 +112,25 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro if mode_checkbox_group == '预训练音色': logging.info('get sft inference request') set_all_random_seed(seed) - output = cosyvoice.inference_sft(tts_text, sft_dropdown) + for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream): + yield (target_sr, i['tts_speech'].numpy().flatten()) elif mode_checkbox_group == '3s极速复刻': logging.info('get zero_shot inference request') prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr)) set_all_random_seed(seed) - output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k) + for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream): + yield (target_sr, i['tts_speech'].numpy().flatten()) elif mode_checkbox_group == '跨语种复刻': logging.info('get cross_lingual inference request') prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr)) set_all_random_seed(seed) - output = cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k) + for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream): + yield (target_sr, i['tts_speech'].numpy().flatten()) else: logging.info('get instruct inference request') set_all_random_seed(seed) - output = cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text) - - if speed_factor != 1.0: - try: - audio_data, sample_rate = speed_change(output["tts_speech"], target_sr, str(speed_factor)) - audio_data = audio_data.numpy().flatten() - except Exception as e: - print(f"Failed to change speed of audio: \n{e}") - else: - audio_data = output['tts_speech'].numpy().flatten() - - return (target_sr, audio_data) + for i in cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text, stream=stream): + yield (target_sr, i['tts_speech'].numpy().flatten()) def main(): with gr.Blocks() as demo: @@ -155,6 +143,7 @@ def main(): mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='选择推理模式', value=inference_mode_list[0]) instruction_text = gr.Text(label="操作步骤", value=instruct_dict[inference_mode_list[0]], scale=0.5) sft_dropdown = gr.Dropdown(choices=sft_spk, label='选择预训练音色', value=sft_spk[0], scale=0.25) + stream = gr.Radio(choices=stream_mode_list, label='是否流式推理', value=stream_mode_list[0][1]) with gr.Column(scale=0.25): seed_button = gr.Button(value="\U0001F3B2") seed = gr.Number(value=0, label="随机推理种子") @@ -167,11 +156,11 @@ def main(): generate_button = gr.Button("生成音频") - audio_output = gr.Audio(label="合成音频") + audio_output = gr.Audio(label="合成音频", autoplay=True, streaming=True) seed_button.click(generate_seed, inputs=[], outputs=seed) generate_button.click(generate_audio, - inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, speed_factor], + inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, stream, speed_factor], outputs=[audio_output]) mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text]) demo.queue(max_size=4, default_concurrency_limit=2) @@ -184,7 +173,7 @@ if __name__ == '__main__': default=8000) parser.add_argument('--model_dir', type=str, - default='iic/CosyVoice-300M', + default='pretrained_models/CosyVoice-300M', help='local path or modelscope repo id') args = parser.parse_args() cosyvoice = CosyVoice(args.model_dir)