add disaggregated deployment

This commit is contained in:
yuekaiz
2025-10-16 15:58:22 +08:00
parent a224be6117
commit 1fc8435146
3 changed files with 93 additions and 5 deletions

View File

@@ -20,7 +20,7 @@ trt_weights_dir=./trt_weights_${trt_dtype}
trt_engines_dir=./trt_engines_${trt_dtype}
model_repo=./model_repo_cosyvoice2_dit
bls_instance_num=4
bls_instance_num=10
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
@@ -58,7 +58,7 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
echo "Building TensorRT engines"
trtllm-build --checkpoint_dir $trt_weights_dir \
--output_dir $trt_engines_dir \
--max_batch_size 16 \
--max_batch_size 64 \
--max_num_tokens 32768 \
--gemm_plugin $trt_dtype || exit 1
@@ -100,14 +100,14 @@ fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
echo "Starting Token2wav Triton server and Cosyvoice2 llm using trtllm-serve"
mpirun -np 1 --allow-run-as-root --oversubscribe trtllm-serve serve --tokenizer $huggingface_model_local_dir $trt_engines_dir --max_batch_size 16 --kv_cache_free_gpu_memory_fraction 0.4 &
mpirun -np 1 --allow-run-as-root --oversubscribe trtllm-serve serve --tokenizer $huggingface_model_local_dir $trt_engines_dir --max_batch_size 64 --kv_cache_free_gpu_memory_fraction 0.4 &
tritonserver --model-repository $model_repo --http-port 18000 &
wait
# Test using curl
# curl http://localhost:8000/v1/chat/completions \
# -H "Content-Type: application/json" \
# -d '{
# "model": "trt_engines_bfloat16",
# "model": "",
# "messages":[{"role": "user", "content": "Where is New York?"},
# {"role": "assistant", "content": "<|s_1708|><|s_2050|><|s_2159|>"}],
# "max_tokens": 512,
@@ -172,3 +172,54 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
echo "Disaggregated Server: LLM and Token2wav on different GPUs"
echo "Starting LLM server on GPU 0"
export CUDA_VISIBLE_DEVICES=0
mpirun -np 1 --allow-run-as-root --oversubscribe trtllm-serve serve --tokenizer $huggingface_model_local_dir $trt_engines_dir --max_batch_size 64 --kv_cache_free_gpu_memory_fraction 0.4 &
echo "Starting Token2wav server on GPUs 1-3"
Token2wav_num_gpus=3
http_port=17000
grpc_port=18000
metrics_port=16000
for i in $(seq 0 $(($Token2wav_num_gpus - 1))); do
echo "Starting server on GPU $i"
http_port=$((http_port + 1))
grpc_port=$((grpc_port + 1))
metrics_port=$((metrics_port + 1))
# Two instances of Token2wav server on the same GPU
CUDA_VISIBLE_DEVICES=$(($i + 1)) tritonserver --model-repository $model_repo --http-port $http_port --grpc-port $grpc_port --metrics-port $metrics_port &
http_port=$((http_port + 1))
grpc_port=$((grpc_port + 1))
metrics_port=$((metrics_port + 1))
CUDA_VISIBLE_DEVICES=$(($i + 1)) tritonserver --model-repository $model_repo --http-port $http_port --grpc-port $grpc_port --metrics-port $metrics_port &
done
wait
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
echo "Running benchmark client for Disaggregated Server"
per_gpu_instances=2
mode=streaming
BLS_INSTANCE_NUM=$bls_instance_num
Token2wav_num_gpus=(1 2 3)
concurrent_tasks=(1 2 3 4 5 6)
for n_gpu in ${Token2wav_num_gpus[@]}; do
echo "Test 1 GPU for LLM server and $n_gpu GPUs for Token2wav servers"
for concurrent_task in ${concurrent_tasks[@]}; do
num_instances=$((per_gpu_instances * n_gpu))
for i in $(seq 1 $num_instances); do
port=$(($i + 18000))
python3 client_grpc.py \
--server-addr localhost \
--server-port $port \
--model-name cosyvoice2_dit \
--num-tasks $concurrent_task \
--mode $mode \
--huggingface-dataset yuekai/seed_tts_cosy2 \
--log-dir ./log_disagg_concurrent_tasks_${concurrent_task}_per_instance_total_token2wav_instances_${num_instances}_port_${port} &
done
wait
done
done
fi