mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
add chinese example
This commit is contained in:
@@ -0,0 +1,198 @@
|
||||
# set random seed, so that you may reproduce your result.
|
||||
__set_seed1: !apply:random.seed [1986]
|
||||
__set_seed2: !apply:numpy.random.seed [1986]
|
||||
__set_seed3: !apply:torch.manual_seed [1986]
|
||||
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
||||
|
||||
# fixed params
|
||||
sample_rate: 22050
|
||||
text_encoder_input_size: 512
|
||||
llm_input_size: 1024
|
||||
llm_output_size: 1024
|
||||
spk_embed_dim: 192
|
||||
|
||||
# model params
|
||||
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
||||
# for system/third_party class/function, we do not require this.
|
||||
llm: !new:cosyvoice.llm.llm.TransformerLM
|
||||
text_encoder_input_size: !ref <text_encoder_input_size>
|
||||
llm_input_size: !ref <llm_input_size>
|
||||
llm_output_size: !ref <llm_output_size>
|
||||
text_token_size: 51866
|
||||
speech_token_size: 4096
|
||||
length_normalized_loss: True
|
||||
lsm_weight: 0
|
||||
spk_embed_dim: !ref <spk_embed_dim>
|
||||
text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||
input_size: !ref <text_encoder_input_size>
|
||||
output_size: 1024
|
||||
attention_heads: 8
|
||||
linear_units: 2048
|
||||
num_blocks: 3
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0
|
||||
normalize_before: True
|
||||
input_layer: 'linear'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
use_cnn_module: False
|
||||
macaron_style: False
|
||||
use_dynamic_chunk: False
|
||||
use_dynamic_left_chunk: False
|
||||
static_chunk_size: 1
|
||||
llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
|
||||
input_size: !ref <llm_input_size>
|
||||
output_size: !ref <llm_output_size>
|
||||
attention_heads: 8
|
||||
linear_units: 2048
|
||||
num_blocks: 7
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0
|
||||
input_layer: 'linear_legacy'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
static_chunk_size: 1
|
||||
|
||||
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
input_size: 512
|
||||
output_size: 80
|
||||
spk_embed_dim: !ref <spk_embed_dim>
|
||||
output_type: 'mel'
|
||||
vocab_size: 4096
|
||||
input_frame_rate: 50
|
||||
only_mask_loss: True
|
||||
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||
output_size: 512
|
||||
attention_heads: 4
|
||||
linear_units: 1024
|
||||
num_blocks: 3
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.1
|
||||
normalize_before: True
|
||||
input_layer: 'linear'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
input_size: 512
|
||||
use_cnn_module: False
|
||||
macaron_style: False
|
||||
length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
|
||||
channels: 80
|
||||
sampling_ratios: [1, 1, 1, 1]
|
||||
decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
|
||||
in_channels: 240
|
||||
n_spks: 1
|
||||
spk_emb_dim: 80
|
||||
cfm_params: !new:omegaconf.DictConfig
|
||||
content:
|
||||
sigma_min: 1e-06
|
||||
solver: 'euler'
|
||||
t_scheduler: 'cosine'
|
||||
training_cfg_rate: 0.2
|
||||
inference_cfg_rate: 0.7
|
||||
reg_loss_type: 'l1'
|
||||
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
|
||||
in_channels: 320
|
||||
out_channels: 80
|
||||
channels: [256, 256]
|
||||
dropout: 0
|
||||
attention_head_dim: 64
|
||||
n_blocks: 4
|
||||
num_mid_blocks: 8
|
||||
num_heads: 8
|
||||
act_fn: 'gelu'
|
||||
|
||||
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||
in_channels: 80
|
||||
base_channels: 512
|
||||
nb_harmonics: 8
|
||||
sampling_rate: !ref <sample_rate>
|
||||
nsf_alpha: 0.1
|
||||
nsf_sigma: 0.003
|
||||
nsf_voiced_threshold: 10
|
||||
upsample_rates: [8, 8]
|
||||
upsample_kernel_sizes: [16, 16]
|
||||
istft_params:
|
||||
n_fft: 16
|
||||
hop_len: 4
|
||||
resblock_kernel_sizes: [3, 7, 11]
|
||||
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||
source_resblock_kernel_sizes: [7, 11]
|
||||
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
|
||||
lrelu_slope: 0.1
|
||||
audio_limit: 0.99
|
||||
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
||||
num_class: 1
|
||||
in_channels: 80
|
||||
cond_channels: 512
|
||||
|
||||
# processor functions
|
||||
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
|
||||
multilingual: True
|
||||
num_languages: 100
|
||||
language: 'en'
|
||||
task: 'transcribe'
|
||||
allowed_special: 'all'
|
||||
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
||||
get_tokenizer: !ref <get_tokenizer>
|
||||
allowed_special: !ref <allowed_special>
|
||||
filter: !name:cosyvoice.dataset.processor.filter
|
||||
max_length: 40960
|
||||
min_length: 0
|
||||
token_max_length: 200
|
||||
token_min_length: 1
|
||||
resample: !name:cosyvoice.dataset.processor.resample
|
||||
resample_rate: !ref <sample_rate>
|
||||
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||
n_fft: 1024
|
||||
num_mels: 80
|
||||
sampling_rate: !ref <sample_rate>
|
||||
hop_size: 256
|
||||
win_size: 1024
|
||||
fmin: 0
|
||||
fmax: 8000
|
||||
center: False
|
||||
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||
feat_extractor: !ref <feat_extractor>
|
||||
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
||||
normalize: True
|
||||
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
||||
shuffle_size: 1000
|
||||
sort: !name:cosyvoice.dataset.processor.sort
|
||||
sort_size: 500 # sort_size should be less than shuffle_size
|
||||
batch: !name:cosyvoice.dataset.processor.batch
|
||||
batch_type: 'dynamic'
|
||||
max_frames_in_batch: 12000
|
||||
padding: !name:cosyvoice.dataset.processor.padding
|
||||
use_spk_embedding: False # change to True during sft
|
||||
|
||||
# dataset processor pipeline
|
||||
data_pipeline: [
|
||||
!ref <parquet_opener>,
|
||||
!ref <tokenize>,
|
||||
!ref <filter>,
|
||||
!ref <resample>,
|
||||
!ref <compute_fbank>,
|
||||
!ref <parse_embedding>,
|
||||
!ref <shuffle>,
|
||||
!ref <sort>,
|
||||
!ref <batch>,
|
||||
!ref <padding>,
|
||||
]
|
||||
|
||||
# train conf
|
||||
train_conf:
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.002 # change to 0.001 if you want to train flow from scratch
|
||||
scheduler: warmuplr
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
||||
max_epoch: 200
|
||||
grad_clip: 5
|
||||
accum_grad: 2
|
||||
log_interval: 100
|
||||
save_per_step: -1
|
||||
198
examples/magicdata-read/cosyvoice/conf/cosyvoice.yaml
Normal file
198
examples/magicdata-read/cosyvoice/conf/cosyvoice.yaml
Normal file
@@ -0,0 +1,198 @@
|
||||
# set random seed, so that you may reproduce your result.
|
||||
__set_seed1: !apply:random.seed [1986]
|
||||
__set_seed2: !apply:numpy.random.seed [1986]
|
||||
__set_seed3: !apply:torch.manual_seed [1986]
|
||||
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
||||
|
||||
# fixed params
|
||||
sample_rate: 22050
|
||||
text_encoder_input_size: 512
|
||||
llm_input_size: 1024
|
||||
llm_output_size: 1024
|
||||
spk_embed_dim: 192
|
||||
|
||||
# model params
|
||||
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
||||
# for system/third_party class/function, we do not require this.
|
||||
llm: !new:cosyvoice.llm.llm.TransformerLM
|
||||
text_encoder_input_size: !ref <text_encoder_input_size>
|
||||
llm_input_size: !ref <llm_input_size>
|
||||
llm_output_size: !ref <llm_output_size>
|
||||
text_token_size: 51866
|
||||
speech_token_size: 4096
|
||||
length_normalized_loss: True
|
||||
lsm_weight: 0
|
||||
spk_embed_dim: !ref <spk_embed_dim>
|
||||
text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||
input_size: !ref <text_encoder_input_size>
|
||||
output_size: 1024
|
||||
attention_heads: 16
|
||||
linear_units: 4096
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0
|
||||
normalize_before: True
|
||||
input_layer: 'linear'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
use_cnn_module: False
|
||||
macaron_style: False
|
||||
use_dynamic_chunk: False
|
||||
use_dynamic_left_chunk: False
|
||||
static_chunk_size: 1
|
||||
llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
|
||||
input_size: !ref <llm_input_size>
|
||||
output_size: !ref <llm_output_size>
|
||||
attention_heads: 16
|
||||
linear_units: 4096
|
||||
num_blocks: 14
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0
|
||||
input_layer: 'linear_legacy'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
static_chunk_size: 1
|
||||
|
||||
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
input_size: 512
|
||||
output_size: 80
|
||||
spk_embed_dim: !ref <spk_embed_dim>
|
||||
output_type: 'mel'
|
||||
vocab_size: 4096
|
||||
input_frame_rate: 50
|
||||
only_mask_loss: True
|
||||
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||
output_size: 512
|
||||
attention_heads: 8
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.1
|
||||
normalize_before: True
|
||||
input_layer: 'linear'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
input_size: 512
|
||||
use_cnn_module: False
|
||||
macaron_style: False
|
||||
length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
|
||||
channels: 80
|
||||
sampling_ratios: [1, 1, 1, 1]
|
||||
decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
|
||||
in_channels: 240
|
||||
n_spks: 1
|
||||
spk_emb_dim: 80
|
||||
cfm_params: !new:omegaconf.DictConfig
|
||||
content:
|
||||
sigma_min: 1e-06
|
||||
solver: 'euler'
|
||||
t_scheduler: 'cosine'
|
||||
training_cfg_rate: 0.2
|
||||
inference_cfg_rate: 0.7
|
||||
reg_loss_type: 'l1'
|
||||
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
|
||||
in_channels: 320
|
||||
out_channels: 80
|
||||
channels: [256, 256]
|
||||
dropout: 0
|
||||
attention_head_dim: 64
|
||||
n_blocks: 4
|
||||
num_mid_blocks: 12
|
||||
num_heads: 8
|
||||
act_fn: 'gelu'
|
||||
|
||||
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||
in_channels: 80
|
||||
base_channels: 512
|
||||
nb_harmonics: 8
|
||||
sampling_rate: !ref <sample_rate>
|
||||
nsf_alpha: 0.1
|
||||
nsf_sigma: 0.003
|
||||
nsf_voiced_threshold: 10
|
||||
upsample_rates: [8, 8]
|
||||
upsample_kernel_sizes: [16, 16]
|
||||
istft_params:
|
||||
n_fft: 16
|
||||
hop_len: 4
|
||||
resblock_kernel_sizes: [3, 7, 11]
|
||||
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||
source_resblock_kernel_sizes: [7, 11]
|
||||
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
|
||||
lrelu_slope: 0.1
|
||||
audio_limit: 0.99
|
||||
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
||||
num_class: 1
|
||||
in_channels: 80
|
||||
cond_channels: 512
|
||||
|
||||
# processor functions
|
||||
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
|
||||
multilingual: True
|
||||
num_languages: 100
|
||||
language: 'en'
|
||||
task: 'transcribe'
|
||||
allowed_special: 'all'
|
||||
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
||||
get_tokenizer: !ref <get_tokenizer>
|
||||
allowed_special: !ref <allowed_special>
|
||||
filter: !name:cosyvoice.dataset.processor.filter
|
||||
max_length: 40960
|
||||
min_length: 0
|
||||
token_max_length: 200
|
||||
token_min_length: 1
|
||||
resample: !name:cosyvoice.dataset.processor.resample
|
||||
resample_rate: !ref <sample_rate>
|
||||
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||
n_fft: 1024
|
||||
num_mels: 80
|
||||
sampling_rate: !ref <sample_rate>
|
||||
hop_size: 256
|
||||
win_size: 1024
|
||||
fmin: 0
|
||||
fmax: 8000
|
||||
center: False
|
||||
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||
feat_extractor: !ref <feat_extractor>
|
||||
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
||||
normalize: True
|
||||
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
||||
shuffle_size: 1000
|
||||
sort: !name:cosyvoice.dataset.processor.sort
|
||||
sort_size: 500 # sort_size should be less than shuffle_size
|
||||
batch: !name:cosyvoice.dataset.processor.batch
|
||||
batch_type: 'dynamic'
|
||||
max_frames_in_batch: 2000
|
||||
padding: !name:cosyvoice.dataset.processor.padding
|
||||
use_spk_embedding: False # change to True during sft
|
||||
|
||||
# dataset processor pipeline
|
||||
data_pipeline: [
|
||||
!ref <parquet_opener>,
|
||||
!ref <tokenize>,
|
||||
!ref <filter>,
|
||||
!ref <resample>,
|
||||
!ref <compute_fbank>,
|
||||
!ref <parse_embedding>,
|
||||
!ref <shuffle>,
|
||||
!ref <sort>,
|
||||
!ref <batch>,
|
||||
!ref <padding>,
|
||||
]
|
||||
|
||||
# train conf
|
||||
train_conf:
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.001 # change to 1e-5 during sft
|
||||
scheduler: warmuplr # change to constantlr during sft
|
||||
scheduler_conf:
|
||||
warmup_steps: 2500
|
||||
max_epoch: 200
|
||||
grad_clip: 5
|
||||
accum_grad: 2
|
||||
log_interval: 100
|
||||
save_per_step: -1
|
||||
42
examples/magicdata-read/cosyvoice/conf/ds_stage2.json
Normal file
42
examples/magicdata-read/cosyvoice/conf/ds_stage2.json
Normal file
@@ -0,0 +1,42 @@
|
||||
{
|
||||
"train_micro_batch_size_per_gpu": 1,
|
||||
"gradient_accumulation_steps": 1,
|
||||
"steps_per_print": 100,
|
||||
"gradient_clipping": 5,
|
||||
"fp16": {
|
||||
"enabled": false,
|
||||
"auto_cast": false,
|
||||
"loss_scale": 0,
|
||||
"initial_scale_power": 16,
|
||||
"loss_scale_window": 256,
|
||||
"hysteresis": 2,
|
||||
"consecutive_hysteresis": false,
|
||||
"min_loss_scale": 1
|
||||
},
|
||||
"bf16": {
|
||||
"enabled": false
|
||||
},
|
||||
"zero_force_ds_cpu_optimizer": false,
|
||||
"zero_optimization": {
|
||||
"stage": 2,
|
||||
"offload_optimizer": {
|
||||
"device": "none",
|
||||
"pin_memory": true
|
||||
},
|
||||
"allgather_partitions": true,
|
||||
"allgather_bucket_size": 5e8,
|
||||
"overlap_comm": false,
|
||||
"reduce_scatter": true,
|
||||
"reduce_bucket_size": 5e8,
|
||||
"contiguous_gradients" : true
|
||||
},
|
||||
"optimizer": {
|
||||
"type": "AdamW",
|
||||
"params": {
|
||||
"lr": 0.001,
|
||||
"weight_decay": 0.0001,
|
||||
"torch_adam": true,
|
||||
"adam_w_mode": true
|
||||
}
|
||||
}
|
||||
}
|
||||
1
examples/magicdata-read/cosyvoice/cosyvoice
Symbolic link
1
examples/magicdata-read/cosyvoice/cosyvoice
Symbolic link
@@ -0,0 +1 @@
|
||||
../../../cosyvoice
|
||||
97
examples/magicdata-read/cosyvoice/local/download_and_untar.sh
Executable file
97
examples/magicdata-read/cosyvoice/local/download_and_untar.sh
Executable file
@@ -0,0 +1,97 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Copyright 2014 Johns Hopkins University (author: Daniel Povey)
|
||||
# Apache 2.0
|
||||
|
||||
remove_archive=false
|
||||
|
||||
if [ "$1" == --remove-archive ]; then
|
||||
remove_archive=true
|
||||
shift
|
||||
fi
|
||||
|
||||
if [ $# -ne 3 ]; then
|
||||
echo "Usage: $0 [--remove-archive] <data-base> <url-base> <corpus-part>"
|
||||
echo "e.g.: $0 /export/a15/vpanayotov/data www.openslr.org/resources/11 dev-clean"
|
||||
echo "With --remove-archive it will remove the archive after successfully un-tarring it."
|
||||
echo "<corpus-part> can be one of: dev-clean, test-clean, dev-other, test-other,"
|
||||
echo " train-clean-100, train-clean-360, train-other-500."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
data=$1
|
||||
url=$2
|
||||
part=$3
|
||||
|
||||
if [ ! -d "$data" ]; then
|
||||
echo "$0: no such directory $data"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
part_ok=false
|
||||
list="dev_set test_set train_set"
|
||||
for x in $list; do
|
||||
if [ "$part" == $x ]; then part_ok=true; fi
|
||||
done
|
||||
if ! $part_ok; then
|
||||
echo "$0: expected <corpus-part> to be one of $list, but got '$part'"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ -z "$url" ]; then
|
||||
echo "$0: empty URL base."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ -f $data/.$part.complete ]; then
|
||||
echo "$0: data part $part was already successfully extracted, nothing to do."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
|
||||
# sizes of the archive files in bytes. This is some older versions.
|
||||
sizes_old="1035537823 2201936013 52627842921"
|
||||
# sizes_new is the archive file sizes of the final release. Some of these sizes are of
|
||||
# things we probably won't download.
|
||||
sizes_new="3886385"
|
||||
|
||||
if [ -f $data/$part.tar.gz ]; then
|
||||
size=$(/bin/ls -l $data/$part.tar.gz | awk '{print $5}')
|
||||
size_ok=false
|
||||
for s in $sizes_old $sizes_new; do if [ $s == $size ]; then size_ok=true; fi; done
|
||||
if ! $size_ok; then
|
||||
echo "$0: removing existing file $data/$part.tar.gz because its size in bytes $size"
|
||||
echo "does not equal the size of one of the archives."
|
||||
rm $data/$part.tar.gz
|
||||
else
|
||||
echo "$data/$part.tar.gz exists and appears to be complete."
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ! -f $data/$part.tar.gz ]; then
|
||||
if ! which wget >/dev/null; then
|
||||
echo "$0: wget is not installed."
|
||||
exit 1
|
||||
fi
|
||||
full_url=$url/$part.tar.gz
|
||||
echo "$0: downloading data from $full_url. This may take some time, please be patient."
|
||||
|
||||
if ! wget -P $data --no-check-certificate $full_url; then
|
||||
echo "$0: error executing wget $full_url"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
if ! tar -C $data -xvzf $data/$part.tar.gz; then
|
||||
echo "$0: error un-tarring archive $data/$part.tar.gz"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
touch $data/.$part.complete
|
||||
|
||||
echo "$0: Successfully downloaded and un-tarred $data/$part.tar.gz"
|
||||
|
||||
if $remove_archive; then
|
||||
echo "$0: removing $data/$part.tar.gz file since --remove-archive option was supplied."
|
||||
rm $data/$part.tar.gz
|
||||
fi
|
||||
50
examples/magicdata-read/cosyvoice/local/prepare_data.py
Normal file
50
examples/magicdata-read/cosyvoice/local/prepare_data.py
Normal file
@@ -0,0 +1,50 @@
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
def main():
|
||||
utt2wav, utt2text, utt2spk, spk2utt = {}, {}, {}, {}
|
||||
with open(os.path.join(args.src_dir, "TRANS.txt"), "r") as f:
|
||||
lines = f.readlines()[1:]
|
||||
lines = [l.split('\t') for l in lines]
|
||||
for wav, spk, content in tqdm(lines):
|
||||
wav, spk, content = wav.strip(), spk.strip(), content.strip()
|
||||
content = content.replace('[FIL]', '')
|
||||
content = content.replace('[SPK]', '')
|
||||
wav = os.path.join(args.src_dir, spk, wav)
|
||||
if not os.path.exists(wav):
|
||||
continue
|
||||
utt = os.path.basename(wav).replace('.wav', '')
|
||||
utt2wav[utt] = wav
|
||||
utt2text[utt] = content
|
||||
utt2spk[utt] = spk
|
||||
if spk not in spk2utt:
|
||||
spk2utt[spk] = []
|
||||
spk2utt[spk].append(utt)
|
||||
|
||||
with open('{}/wav.scp'.format(args.des_dir), 'w') as f:
|
||||
for k, v in utt2wav.items():
|
||||
f.write('{} {}\n'.format(k, v))
|
||||
with open('{}/text'.format(args.des_dir), 'w') as f:
|
||||
for k, v in utt2text.items():
|
||||
f.write('{} {}\n'.format(k, v))
|
||||
with open('{}/utt2spk'.format(args.des_dir), 'w') as f:
|
||||
for k, v in utt2spk.items():
|
||||
f.write('{} {}\n'.format(k, v))
|
||||
with open('{}/spk2utt'.format(args.des_dir), 'w') as f:
|
||||
for k, v in spk2utt.items():
|
||||
f.write('{} {}\n'.format(k, ' '.join(v)))
|
||||
return
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--src_dir',
|
||||
type=str)
|
||||
parser.add_argument('--des_dir',
|
||||
type=str)
|
||||
args = parser.parse_args()
|
||||
main()
|
||||
3
examples/magicdata-read/cosyvoice/path.sh
Normal file
3
examples/magicdata-read/cosyvoice/path.sh
Normal file
@@ -0,0 +1,3 @@
|
||||
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||
export PYTHONIOENCODING=UTF-8
|
||||
export PYTHONPATH=../../../:../../../third_party/Matcha-TTS:$PYTHONPATH
|
||||
105
examples/magicdata-read/cosyvoice/run.sh
Normal file
105
examples/magicdata-read/cosyvoice/run.sh
Normal file
@@ -0,0 +1,105 @@
|
||||
#!/bin/bash
|
||||
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
||||
. ./path.sh || exit 1;
|
||||
|
||||
stage=-1
|
||||
stop_stage=3
|
||||
|
||||
data_url=www.openslr.org/resources/68
|
||||
data_dir=/mnt/hengwu.zty/data/tts/openslr/magicdata-read
|
||||
pretrained_model_dir=../../../pretrained_models/CosyVoice-300M
|
||||
|
||||
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
||||
echo "Data Download"
|
||||
for part in dev_set test_set train_set; do
|
||||
local/download_and_untar.sh ${data_dir} ${data_url} ${part}
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
|
||||
for x in dev test train; do
|
||||
mkdir -p data/$x
|
||||
python local/prepare_data.py --src_dir $data_dir/$x --des_dir data/$x
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
|
||||
for x in dev test train; do
|
||||
tools/extract_embedding.py --dir data/$x \
|
||||
--onnx_path $pretrained_model_dir/campplus.onnx
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
|
||||
for x in dev test train; do
|
||||
tools/extract_speech_token.py --dir data/$x \
|
||||
--onnx_path $pretrained_model_dir/speech_tokenizer_v1.onnx
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
|
||||
for x in dev test train; do
|
||||
mkdir -p data/$x/parquet
|
||||
tools/make_parquet_list.py --num_utts_per_parquet 1000 \
|
||||
--num_processes 10 \
|
||||
--src_dir data/$x \
|
||||
--des_dir data/$x/parquet
|
||||
done
|
||||
fi
|
||||
|
||||
# inference
|
||||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
echo "Run inference. Please make sure utt in tts_text is in prompt_data"
|
||||
for mode in sft zero_shot; do
|
||||
python cosyvoice/bin/inference.py --mode $mode \
|
||||
--gpu 0 \
|
||||
--config conf/cosyvoice.yaml \
|
||||
--prompt_data data/test/parquet/data.list \
|
||||
--prompt_utt2data data/test/parquet/utt2data.list \
|
||||
--tts_text `pwd`/tts_text.json \
|
||||
--llm_model $pretrained_model_dir/llm.pt \
|
||||
--flow_model $pretrained_model_dir/flow.pt \
|
||||
--hifigan_model $pretrained_model_dir/hift.pt \
|
||||
--result_dir `pwd`/exp/cosyvoice/test/$mode
|
||||
done
|
||||
fi
|
||||
|
||||
# train llm
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
job_id=1986
|
||||
dist_backend="nccl"
|
||||
num_workers=2
|
||||
prefetch=100
|
||||
train_engine=torch_ddp
|
||||
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml"
|
||||
if [ $train_engine == 'deepspeed' ]; then
|
||||
echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
|
||||
fi
|
||||
cp data/train/parquet/data.list data/train.data.list
|
||||
cp data/dev/parquet/data.list data/dev.data.list
|
||||
for model in llm; do
|
||||
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
||||
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
|
||||
cosyvoice/bin/train.py \
|
||||
--train_engine $train_engine \
|
||||
--config conf/cosyvoice.yaml \
|
||||
--train_data data/train.data.list \
|
||||
--cv_data data/dev.data.list \
|
||||
--model $model \
|
||||
--checkpoint $pretrained_model_dir/$model.pt \
|
||||
--model_dir `pwd`/exp/cosyvoice/$model/$train_engine \
|
||||
--tensorboard_dir `pwd`/tensorboard/cosyvoice/$model/$train_engine \
|
||||
--ddp.dist_backend $dist_backend \
|
||||
--num_workers ${num_workers} \
|
||||
--prefetch ${prefetch} \
|
||||
--pin_memory \
|
||||
--deepspeed_config ./conf/ds_stage2.json \
|
||||
--deepspeed.save_states model+optimizer
|
||||
done
|
||||
fi
|
||||
1
examples/magicdata-read/cosyvoice/tools
Symbolic link
1
examples/magicdata-read/cosyvoice/tools
Symbolic link
@@ -0,0 +1 @@
|
||||
../../../tools
|
||||
18
examples/magicdata-read/cosyvoice/tts_text.json
Normal file
18
examples/magicdata-read/cosyvoice/tts_text.json
Normal file
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"38_5718_20170915093303": [
|
||||
"我想这出最好歌曲把歌词发到网上请别人帮我作曲急急",
|
||||
"叫他明天早上差五分儿九点去机场"
|
||||
],
|
||||
"38_5721_20170915091235": [
|
||||
"变温室调到零下两度档",
|
||||
"交谈中请勿轻信汇款信息陌生电话请勿使用外挂软件"
|
||||
],
|
||||
"38_5733_20170915130323": [
|
||||
"这是老鹰乐队的一首经典歌曲",
|
||||
"我急用这段音乐我自己找到一段但是有现场杂音"
|
||||
],
|
||||
"38_5836_20170916221414": [
|
||||
"给我播一个陶喆的专辑",
|
||||
"这套餐好贵呀我发这么多短信贵死了"
|
||||
]
|
||||
}
|
||||
Reference in New Issue
Block a user