diff --git a/cosyvoice/cli/model.py b/cosyvoice/cli/model.py index f5381e0..1fcc31f 100644 --- a/cosyvoice/cli/model.py +++ b/cosyvoice/cli/model.py @@ -53,6 +53,7 @@ class CosyVoiceModel: self.tts_speech_token_dict = {} self.llm_end_dict = {} self.mel_overlap_dict = {} + self.flow_cache_dict = {} self.hift_cache_dict = {} def load(self, llm_model, flow_model, hift_model): @@ -100,15 +101,18 @@ class CosyVoiceModel: self.llm_end_dict[uuid] = True def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0): - tts_mel = self.flow.inference(token=token.to(self.device), - token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device), - prompt_token=prompt_token.to(self.device), - prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device), - prompt_feat=prompt_feat.to(self.device), - prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device), - embedding=embedding.to(self.device)) + tts_mel, flow_cache = self.flow.inference(token=token.to(self.device), + token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device), + prompt_token=prompt_token.to(self.device), + prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device), + prompt_feat=prompt_feat.to(self.device), + prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device), + embedding=embedding.to(self.device), + flow_cache=self.flow_cache_dict[uuid]) + self.flow_cache_dict[uuid] = flow_cache + # mel overlap fade in out - if self.mel_overlap_dict[uuid] is not None: + if self.mel_overlap_dict[uuid].shape[2] != 0: tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window) # append hift cache if self.hift_cache_dict[uuid] is not None: @@ -145,7 +149,9 @@ class CosyVoiceModel: this_uuid = str(uuid.uuid1()) with self.lock: self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False - self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = None, None + self.hift_cache_dict[this_uuid] = None + self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0) + self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2) p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid)) p.start() if stream is True: @@ -201,7 +207,9 @@ class CosyVoiceModel: this_uuid = str(uuid.uuid1()) with self.lock: self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True - self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = None, None + self.hift_cache_dict[this_uuid] = None + self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0) + self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2) if stream is True: token_hop_len = self.token_min_hop_len while True: diff --git a/cosyvoice/flow/flow.py b/cosyvoice/flow/flow.py index 0fa6407..eea705b 100644 --- a/cosyvoice/flow/flow.py +++ b/cosyvoice/flow/flow.py @@ -109,7 +109,8 @@ class MaskedDiffWithXvec(torch.nn.Module): prompt_token_len, prompt_feat, prompt_feat_len, - embedding): + embedding, + flow_cache): assert token.shape[0] == 1 # xvec projection embedding = F.normalize(embedding, dim=1) @@ -133,13 +134,15 @@ class MaskedDiffWithXvec(torch.nn.Module): conds = conds.transpose(1, 2) mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h) - feat = self.decoder( + feat, flow_cache = self.decoder( mu=h.transpose(1, 2).contiguous(), mask=mask.unsqueeze(1), spks=embedding, cond=conds, - n_timesteps=10 + n_timesteps=10, + prompt_len=mel_len1, + flow_cache=flow_cache ) feat = feat[:, :, mel_len1:] assert feat.shape[2] == mel_len2 - return feat + return feat, flow_cache diff --git a/cosyvoice/flow/flow_matching.py b/cosyvoice/flow/flow_matching.py index 92afee2..d011304 100644 --- a/cosyvoice/flow/flow_matching.py +++ b/cosyvoice/flow/flow_matching.py @@ -32,7 +32,7 @@ class ConditionalCFM(BASECFM): self.estimator = estimator @torch.inference_mode() - def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None): + def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)): """Forward diffusion Args: @@ -50,11 +50,21 @@ class ConditionalCFM(BASECFM): sample: generated mel-spectrogram shape: (batch_size, n_feats, mel_timesteps) """ + z = torch.randn_like(mu) * temperature + cache_size = flow_cache.shape[2] + # fix prompt and overlap part mu and z + if cache_size != 0: + z[:, :, :cache_size] = flow_cache[:, :, :, 0] + mu[:, :, :cache_size] = flow_cache[:, :, :, 1] + z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2) + mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2) + flow_cache = torch.stack([z_cache, mu_cache], dim=-1) + t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype) if self.t_scheduler == 'cosine': t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) - return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond) + return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache def solve_euler(self, x, t_span, mu, mask, spks, cond): """