diff --git a/.github/workflows/lint.yml b/.github/workflows/lint.yml
index ef28761..4002222 100644
--- a/.github/workflows/lint.yml
+++ b/.github/workflows/lint.yml
@@ -52,5 +52,5 @@ jobs:
set -eux
pip install flake8==3.8.2 flake8-bugbear flake8-comprehensions flake8-executable flake8-pyi==20.5.0 mccabe pycodestyle==2.6.0 pyflakes==2.2.0
flake8 --version
- flake8 --max-line-length 180 --ignore B006,B008,B905,C408,E402,E731,E741,W503,W504,F401,F403,F405,F841 --exclude ./third_party/,./runtime/python/grpc/cosyvoice_pb2*py
+ flake8 --max-line-length 180 --ignore B006,B008,B905,C408,E402,E731,E741,W503,W504,F401,F403,F405,F722,F841 --exclude ./third_party/,./runtime/python/grpc/cosyvoice_pb2*py
if [ $? != 0 ]; then exit 1; fi
\ No newline at end of file
diff --git a/README.md b/README.md
index 1d32e44..5a9185d 100644
--- a/README.md
+++ b/README.md
@@ -2,7 +2,7 @@
## 👉🏻 CosyVoice 👈🏻
-**CosyVoice 3.0**: [Demos](https://funaudiollm.github.io/cosyvoice3/); [Paper](https://arxiv.org/abs/2505.17589); [CV3-Eval](https://github.com/FunAudioLLM/CV3-Eval)
+**Fun-CosyVoice 3.0**: [Demos](https://funaudiollm.github.io/cosyvoice3/); [Paper](https://arxiv.org/abs/2505.17589); [Modelscope](https://www.modelscope.cn/studios/FunAudioLLM/Fun-CosyVoice3-0.5B); [CV3-Eval](https://github.com/FunAudioLLM/CV3-Eval)
**CosyVoice 2.0**: [Demos](https://funaudiollm.github.io/cosyvoice2/); [Paper](https://arxiv.org/abs/2412.10117); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice2-0.5B); [HuggingFace](https://huggingface.co/spaces/FunAudioLLM/CosyVoice2-0.5B)
@@ -10,45 +10,43 @@
## Highlight🔥
-**CosyVoice 2.0** has been released! Compared to version 1.0, the new version offers more accurate, more stable, faster, and better speech generation capabilities.
-### Multilingual
-- **Supported Language**: Chinese, English, Japanese, Korean, Chinese dialects (Cantonese, Sichuanese, Shanghainese, Tianjinese, Wuhanese, etc.)
-- **Crosslingual & Mixlingual**:Support zero-shot voice cloning for cross-lingual and code-switching scenarios.
-### Ultra-Low Latency
-- **Bidirectional Streaming Support**: CosyVoice 2.0 integrates offline and streaming modeling technologies.
-- **Rapid First Packet Synthesis**: Achieves latency as low as 150ms while maintaining high-quality audio output.
-### High Accuracy
-- **Improved Pronunciation**: Reduces pronunciation errors by 30% to 50% compared to CosyVoice 1.0.
-- **Benchmark Achievements**: Attains the lowest character error rate on the hard test set of the Seed-TTS evaluation set.
-### Strong Stability
-- **Consistency in Timbre**: Ensures reliable voice consistency for zero-shot and cross-language speech synthesis.
-- **Cross-language Synthesis**: Marked improvements compared to version 1.0.
-### Natural Experience
-- **Enhanced Prosody and Sound Quality**: Improved alignment of synthesized audio, raising MOS evaluation scores from 5.4 to 5.53.
-- **Emotional and Dialectal Flexibility**: Now supports more granular emotional controls and accent adjustments.
+**Fun-CosyVoice 3.0** is an advanced text-to-speech (TTS) system based on large language models (LLM), surpassing its predecessor (CosyVoice 2.0) in content consistency, speaker similarity, and prosody naturalness. It is designed for zero-shot multilingual speech synthesis in the wild.
+### Key Features
+- **Language Coverage**: Covers 9 common languages (Chinese, English, Japanese, Korean, German, Spanish, French, Italian, Russian), 18+ Chinese dialects/accents (Guangdong, Minnan, Sichuan, Dongbei, Shan3xi, Shan1xi, Shanghai, Tianjin, Shan1dong, Ningxia, Gansu, etc.) and meanwhile supports both multi-lingual/cross-lingual zero-shot voice cloning.
+- **Content Consistency & Naturalness**: Achieves state-of-the-art performance in content consistency, speaker similarity, and prosody naturalness.
+- **Pronunciation Inpainting**: Supports pronunciation inpainting of Chinese Pinyin and English CMU phonemes, providing more controllability and thus suitable for production use.
+- **Text Normalization**: Supports reading of numbers, special symbols and various text formats without a traditional frontend module.
+- **Bi-Streaming**: Support both text-in streaming and audio-out streaming, and achieves latency as low as 150ms while maintaining high-quality audio output.
+- **Instruct Support**: Supports various instructions such as languages, dialects, emotions, speed, volume, etc.
+
## Roadmap
+- [x] 2025/12
+
+ - [x] release Fun-CosyVoice3-0.5B-2512 base model, rl model and its training/inference script
+ - [x] release Fun-CosyVoice3-0.5B modelscope gradio space
+
- [x] 2025/08
- [x] Thanks to the contribution from NVIDIA Yuekai Zhang, add triton trtllm runtime support and cosyvoice2 grpo training support
- [x] 2025/07
- - [x] release cosyvoice 3.0 eval set
+ - [x] release Fun-CosyVoice 3.0 eval set
- [x] 2025/05
- - [x] add cosyvoice 2.0 vllm support
+ - [x] add CosyVoice2-0.5B vllm support
- [x] 2024/12
- - [x] 25hz cosyvoice 2.0 released
+ - [x] 25hz CosyVoice2-0.5B released
- [x] 2024/09
- - [x] 25hz cosyvoice base model
- - [x] 25hz cosyvoice voice conversion model
+ - [x] 25hz CosyVoice-300M base model
+ - [x] 25hz CosyVoice-300M voice conversion function
- [x] 2024/08
@@ -61,6 +59,25 @@
- [x] WeTextProcessing support when ttsfrd is not available
- [x] Fastapi server and client
+## Evaluation
+| Model | CER (%) ↓ (test-zh) | WER (%) ↓ (test-en) | CER (%) ↓ (test-hard) |
+|-----|------------------|------------------|------------------|
+| Human | 1.26 | 2.14 | - |
+| F5-TTS | 1.53 | 2.00 | 8.67 |
+| SparkTTS | 1.20 | 1.98 | - |
+| Seed-TTS | 1.12 | 2.25 | 7.59 |
+| CosyVoice2 | 1.45 | 2.57 | 6.83 |
+| FireRedTTS-2 | 1.14 | 1.95 | - |
+| IndexTTS2 | 1.01 | 1.52 | 7.12 |
+| VibeVoice | 1.16 | 3.04 | - |
+| HiggsAudio | 1.79 | 2.44 | - |
+| MiniMax-Speech | 0.83 | 1.65 | - |
+| VoxPCM | 0.93 | 1.85 | 8.87 |
+| GLM-TTS | 1.03 | - | - |
+| GLM-TTS_RL | 0.89 | - | - |
+| Fun-CosyVoice3-0.5B-2512 | 1.21 | 2.24 | 6.71 |
+| Fun-CosyVoice3-0.5B-2512_RL | 0.81 | 1.68 | 5.44 |
+
## Install
@@ -91,11 +108,12 @@
### Model download
-We strongly recommend that you download our pretrained `CosyVoice2-0.5B` `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
+We strongly recommend that you download our pretrained `Fun-CosyVoice3-0.5B` `CosyVoice2-0.5B` `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
``` python
# SDK模型下载
from modelscope import snapshot_download
+snapshot_download('FunAudioLLM/Fun-CosyVoice3-0.5B-2512', local_dir='pretrained_models/Fun-CosyVoice3-0.5B')
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
@@ -103,16 +121,6 @@ snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/Co
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
```
-``` sh
-# git模型下载,请确保已安装git lfs
-mkdir -p pretrained_models
-git clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5B
-git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
-git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
-git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
-git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
-```
-
Optionally, you can unzip `ttsfrd` resource and install `ttsfrd` package for better text normalization performance.
Notice that this step is not necessary. If you do not install `ttsfrd` package, we will use wetext by default.
@@ -126,50 +134,10 @@ pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl
### Basic Usage
-We strongly recommend using `CosyVoice2-0.5B` for better performance.
-Follow the code below for detailed usage of each model.
-
-``` python
-import sys
-sys.path.append('third_party/Matcha-TTS')
-from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
-from cosyvoice.utils.file_utils import load_wav
-import torchaudio
-```
-
-#### CosyVoice2 Usage
-```python
-cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, load_vllm=False, fp16=False)
-
-# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
-# zero_shot usage
-prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
-for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
- torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-
-# save zero_shot spk for future usage
-assert cosyvoice.add_zero_shot_spk('希望你以后能够做的比我还好呦。', prompt_speech_16k, 'my_zero_shot_spk') is True
-for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '', '', zero_shot_spk_id='my_zero_shot_spk', stream=False)):
- torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-cosyvoice.save_spkinfo()
-
-# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
-for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', prompt_speech_16k, stream=False)):
- torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-
-# instruct usage
-for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)):
- torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-
-# bistream usage, you can use generator as input, this is useful when using text llm model as input
-# NOTE you should still have some basic sentence split logic because llm can not handle arbitrary sentence length
-def text_generator():
- yield '收到好友从远方寄来的生日礼物,'
- yield '那份意外的惊喜与深深的祝福'
- yield '让我心中充满了甜蜜的快乐,'
- yield '笑容如花儿般绽放。'
-for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
- torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+We strongly recommend using `Fun-CosyVoice3-0.5B` for better performance.
+Follow the code in `example.py` for detailed usage of each model.
+```sh
+python example.py
```
#### CosyVoice2 vllm Usage
@@ -184,36 +152,6 @@ pip install vllm==v0.9.0 transformers==4.51.3 -i https://mirrors.aliyun.com/pypi
python vllm_example.py
```
-#### CosyVoice Usage
-```python
-cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=False, load_trt=False, fp16=False)
-# sft usage
-print(cosyvoice.list_available_spks())
-# change stream=True for chunk stream inference
-for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
- torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-
-cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M')
-# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
-prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
-for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
- torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-# cross_lingual usage
-prompt_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
-for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
- torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-# vc usage
-prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
-source_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
-for i, j in enumerate(cosyvoice.inference_vc(source_speech_16k, prompt_speech_16k, stream=False)):
- torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-
-cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
-# instruct usage, support [laughter][breath]
-for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的勇气与智慧。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
- torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
-```
-
#### Start web demo
You can use our web demo page to get familiar with CosyVoice quickly.
diff --git a/asset/dingding.png b/asset/dingding.png
index 8467cd9..b7a955e 100644
Binary files a/asset/dingding.png and b/asset/dingding.png differ
diff --git a/asset/zero_shot_prompt.wav b/asset/zero_shot_prompt.wav
index 25fbf59..a7b9d95 100644
Binary files a/asset/zero_shot_prompt.wav and b/asset/zero_shot_prompt.wav differ
diff --git a/cosyvoice/bin/export_jit.py b/cosyvoice/bin/export_jit.py
index 4eedc1a..0013d64 100644
--- a/cosyvoice/bin/export_jit.py
+++ b/cosyvoice/bin/export_jit.py
@@ -23,8 +23,10 @@ import torch
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/../..'.format(ROOT_DIR))
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
-from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
+from cosyvoice.cli.cosyvoice import AutoModel
+from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model, CosyVoice3Model
from cosyvoice.utils.file_utils import logging
+from cosyvoice.utils.class_utils import get_model_type
def get_args():
@@ -57,15 +59,17 @@ def main():
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
- try:
- model = CosyVoice(args.model_dir)
- except Exception:
- try:
- model = CosyVoice2(args.model_dir)
- except Exception:
- raise TypeError('no valid model_type!')
+ model = AutoModel(model_dir=args.model_dir)
- if not isinstance(model, CosyVoice2):
+ if get_model_type(model.model) == CosyVoiceModel:
+ # 1. export flow encoder
+ flow_encoder = model.model.flow.encoder
+ script = get_optimized_script(flow_encoder)
+ script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
+ script = get_optimized_script(flow_encoder.half())
+ script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
+ logging.info('successfully export flow_encoder')
+ elif get_model_type(model.model) == CosyVoice2Model:
# 1. export llm text_encoder
llm_text_encoder = model.model.llm.text_encoder
script = get_optimized_script(llm_text_encoder)
@@ -90,13 +94,7 @@ def main():
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
logging.info('successfully export flow_encoder')
else:
- # 3. export flow encoder
- flow_encoder = model.model.flow.encoder
- script = get_optimized_script(flow_encoder)
- script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
- script = get_optimized_script(flow_encoder.half())
- script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
- logging.info('successfully export flow_encoder')
+ raise ValueError('unsupported model type')
if __name__ == '__main__':
diff --git a/cosyvoice/bin/export_onnx.py b/cosyvoice/bin/export_onnx.py
index dd9f009..58e7708 100644
--- a/cosyvoice/bin/export_onnx.py
+++ b/cosyvoice/bin/export_onnx.py
@@ -27,7 +27,7 @@ from tqdm import tqdm
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/../..'.format(ROOT_DIR))
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
-from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
+from cosyvoice.cli.cosyvoice import AutoModel
from cosyvoice.utils.file_utils import logging
@@ -58,13 +58,7 @@ def main():
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(levelname)s %(message)s')
- try:
- model = CosyVoice(args.model_dir)
- except Exception:
- try:
- model = CosyVoice2(args.model_dir)
- except Exception:
- raise TypeError('no valid model_type!')
+ model = AutoModel(model_dir=args.model_dir)
# 1. export flow decoder estimator
estimator = model.model.flow.decoder.estimator
diff --git a/cosyvoice/bin/inference_deprecated.py b/cosyvoice/bin/inference_deprecated.py
deleted file mode 100644
index 0d45cc7..0000000
--- a/cosyvoice/bin/inference_deprecated.py
+++ /dev/null
@@ -1,126 +0,0 @@
-# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from __future__ import print_function
-
-import argparse
-import logging
-logging.getLogger('matplotlib').setLevel(logging.WARNING)
-import os
-import torch
-from torch.utils.data import DataLoader
-import torchaudio
-from hyperpyyaml import load_hyperpyyaml
-from tqdm import tqdm
-from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
-from cosyvoice.dataset.dataset import Dataset
-
-
-def get_args():
- parser = argparse.ArgumentParser(description='inference with your model')
- parser.add_argument('--config', required=True, help='config file')
- parser.add_argument('--prompt_data', required=True, help='prompt data file')
- parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
- parser.add_argument('--tts_text', required=True, help='tts input file')
- parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
- parser.add_argument('--llm_model', required=True, help='llm model file')
- parser.add_argument('--flow_model', required=True, help='flow model file')
- parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
- parser.add_argument('--gpu',
- type=int,
- default=-1,
- help='gpu id for this rank, -1 for cpu')
- parser.add_argument('--mode',
- default='sft',
- choices=['sft', 'zero_shot'],
- help='inference mode')
- parser.add_argument('--result_dir', required=True, help='asr result file')
- args = parser.parse_args()
- print(args)
- return args
-
-
-def main():
- args = get_args()
- logging.basicConfig(level=logging.DEBUG,
- format='%(asctime)s %(levelname)s %(message)s')
- os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
-
- # Init cosyvoice models from configs
- use_cuda = args.gpu >= 0 and torch.cuda.is_available()
- device = torch.device('cuda' if use_cuda else 'cpu')
- try:
- with open(args.config, 'r') as f:
- configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': args.qwen_pretrain_path})
- model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'])
- except Exception:
- try:
- with open(args.config, 'r') as f:
- configs = load_hyperpyyaml(f)
- model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
- except Exception:
- raise TypeError('no valid model_type!')
-
- model.load(args.llm_model, args.flow_model, args.hifigan_model)
-
- test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
- tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
- test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
-
- sample_rate = configs['sample_rate']
- del configs
- os.makedirs(args.result_dir, exist_ok=True)
- fn = os.path.join(args.result_dir, 'wav.scp')
- f = open(fn, 'w')
- with torch.no_grad():
- for _, batch in tqdm(enumerate(test_data_loader)):
- utts = batch["utts"]
- assert len(utts) == 1, "inference mode only support batchsize 1"
- text_token = batch["text_token"].to(device)
- text_token_len = batch["text_token_len"].to(device)
- tts_index = batch["tts_index"]
- tts_text_token = batch["tts_text_token"].to(device)
- tts_text_token_len = batch["tts_text_token_len"].to(device)
- speech_token = batch["speech_token"].to(device)
- speech_token_len = batch["speech_token_len"].to(device)
- speech_feat = batch["speech_feat"].to(device)
- speech_feat_len = batch["speech_feat_len"].to(device)
- utt_embedding = batch["utt_embedding"].to(device)
- spk_embedding = batch["spk_embedding"].to(device)
- if args.mode == 'sft':
- model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
- 'llm_embedding': spk_embedding, 'flow_embedding': spk_embedding}
- else:
- model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
- 'prompt_text': text_token, 'prompt_text_len': text_token_len,
- 'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
- 'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
- 'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
- 'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
- tts_speeches = []
- for model_output in model.tts(**model_input):
- tts_speeches.append(model_output['tts_speech'])
- tts_speeches = torch.concat(tts_speeches, dim=1)
- tts_key = '{}_{}'.format(utts[0], tts_index[0])
- tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
- torchaudio.save(tts_fn, tts_speeches, sample_rate=sample_rate, backend='soundfile')
- f.write('{} {}\n'.format(tts_key, tts_fn))
- f.flush()
- f.close()
- logging.info('Result wav.scp saved in {}'.format(fn))
-
-
-if __name__ == '__main__':
- logging.warning('this code has been deprecated, please refer to README for CosyVoice inference usage!')
- main()
diff --git a/cosyvoice/cli/cosyvoice.py b/cosyvoice/cli/cosyvoice.py
index cc443be..316b5f1 100644
--- a/cosyvoice/cli/cosyvoice.py
+++ b/cosyvoice/cli/cosyvoice.py
@@ -19,7 +19,7 @@ from hyperpyyaml import load_hyperpyyaml
from modelscope import snapshot_download
import torch
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
-from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
+from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model, CosyVoice3Model
from cosyvoice.utils.file_utils import logging
from cosyvoice.utils.class_utils import get_model_type
@@ -27,7 +27,6 @@ from cosyvoice.utils.class_utils import get_model_type
class CosyVoice:
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1):
- self.instruct = True if '-Instruct' in model_dir else False
self.model_dir = model_dir
self.fp16 = fp16
if not os.path.exists(model_dir):
@@ -37,7 +36,7 @@ class CosyVoice:
raise ValueError('{} not found!'.format(hyper_yaml_path))
with open(hyper_yaml_path, 'r') as f:
configs = load_hyperpyyaml(f)
- assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
+ assert get_model_type(configs) == CosyVoiceModel, 'do not use {} for CosyVoice initialization!'.format(model_dir)
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
configs['feat_extractor'],
'{}/campplus.onnx'.format(model_dir),
@@ -67,9 +66,9 @@ class CosyVoice:
spks = list(self.frontend.spk2info.keys())
return spks
- def add_zero_shot_spk(self, prompt_text, prompt_speech_16k, zero_shot_spk_id):
+ def add_zero_shot_spk(self, prompt_text, prompt_wav, zero_shot_spk_id):
assert zero_shot_spk_id != '', 'do not use empty zero_shot_spk_id'
- model_input = self.frontend.frontend_zero_shot('', prompt_text, prompt_speech_16k, self.sample_rate, '')
+ model_input = self.frontend.frontend_zero_shot('', prompt_text, prompt_wav, self.sample_rate, '')
del model_input['text']
del model_input['text_len']
self.frontend.spk2info[zero_shot_spk_id] = model_input
@@ -89,12 +88,12 @@ class CosyVoice:
yield model_output
start_time = time.time()
- def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
+ def inference_zero_shot(self, tts_text, prompt_text, prompt_wav, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
- model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
+ model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_wav, self.sample_rate, zero_shot_spk_id)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
@@ -103,9 +102,9 @@ class CosyVoice:
yield model_output
start_time = time.time()
- def inference_cross_lingual(self, tts_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
+ def inference_cross_lingual(self, tts_text, prompt_wav, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
- model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
+ model_input = self.frontend.frontend_cross_lingual(i, prompt_wav, self.sample_rate, zero_shot_spk_id)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
@@ -116,8 +115,6 @@ class CosyVoice:
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
- if self.instruct is False:
- raise ValueError('{} do not support instruct inference'.format(self.model_dir))
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
@@ -129,8 +126,8 @@ class CosyVoice:
yield model_output
start_time = time.time()
- def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
- model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
+ def inference_vc(self, source_wav, prompt_wav, stream=False, speed=1.0):
+ model_input = self.frontend.frontend_vc(source_wav, prompt_wav, self.sample_rate)
start_time = time.time()
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
@@ -142,7 +139,6 @@ class CosyVoice:
class CosyVoice2(CosyVoice):
def __init__(self, model_dir, load_jit=False, load_trt=False, load_vllm=False, fp16=False, trt_concurrent=1):
- self.instruct = True if '-Instruct' in model_dir else False
self.model_dir = model_dir
self.fp16 = fp16
if not os.path.exists(model_dir):
@@ -160,9 +156,9 @@ class CosyVoice2(CosyVoice):
'{}/spk2info.pt'.format(model_dir),
configs['allowed_special'])
self.sample_rate = configs['sample_rate']
- if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
- load_jit, load_trt, fp16 = False, False, False
- logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
+ if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or load_vllm is True or fp16 is True):
+ load_jit, load_trt, load_vllm, fp16 = False, False, False, False
+ logging.warning('no cuda device, set load_jit/load_trt/load_vllm/fp16 to False')
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
self.model.load('{}/llm.pt'.format(model_dir),
'{}/flow.pt'.format(model_dir),
@@ -178,13 +174,9 @@ class CosyVoice2(CosyVoice):
self.fp16)
del configs
- def inference_instruct(self, *args, **kwargs):
- raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
-
- def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
- assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
+ def inference_instruct2(self, tts_text, instruct_text, prompt_wav, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
- model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
+ model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_wav, self.sample_rate, zero_shot_spk_id)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
@@ -192,3 +184,55 @@ class CosyVoice2(CosyVoice):
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
+
+
+class CosyVoice3(CosyVoice2):
+
+ def __init__(self, model_dir, load_trt=False, load_vllm=False, fp16=False, trt_concurrent=1):
+ self.model_dir = model_dir
+ self.fp16 = fp16
+ if not os.path.exists(model_dir):
+ model_dir = snapshot_download(model_dir)
+ hyper_yaml_path = '{}/cosyvoice3.yaml'.format(model_dir)
+ if not os.path.exists(hyper_yaml_path):
+ raise ValueError('{} not found!'.format(hyper_yaml_path))
+ with open(hyper_yaml_path, 'r') as f:
+ configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
+ assert get_model_type(configs) == CosyVoice3Model, 'do not use {} for CosyVoice3 initialization!'.format(model_dir)
+ self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
+ configs['feat_extractor'],
+ '{}/campplus.onnx'.format(model_dir),
+ '{}/speech_tokenizer_v3.onnx'.format(model_dir),
+ '{}/spk2info.pt'.format(model_dir),
+ configs['allowed_special'])
+ self.sample_rate = configs['sample_rate']
+ if torch.cuda.is_available() is False and (load_trt is True or fp16 is True):
+ load_trt, fp16 = False, False
+ logging.warning('no cuda device, set load_trt/fp16 to False')
+ self.model = CosyVoice3Model(configs['llm'], configs['flow'], configs['hift'], fp16)
+ self.model.load('{}/llm.pt'.format(model_dir),
+ '{}/flow.pt'.format(model_dir),
+ '{}/hift.pt'.format(model_dir))
+ if load_vllm:
+ self.model.load_vllm('{}/vllm'.format(model_dir))
+ if load_trt:
+ if self.fp16 is True:
+ logging.warning('DiT tensorRT fp16 engine have some performance issue, use at caution!')
+ self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
+ '{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
+ trt_concurrent,
+ self.fp16)
+ del configs
+
+
+def AutoModel(**kwargs):
+ if not os.path.exists(kwargs['model_dir']):
+ kwargs['model_dir'] = snapshot_download(kwargs['model_dir'])
+ if os.path.exists('{}/cosyvoice.yaml'.format(kwargs['model_dir'])):
+ return CosyVoice(**kwargs)
+ elif os.path.exists('{}/cosyvoice2.yaml'.format(kwargs['model_dir'])):
+ return CosyVoice2(**kwargs)
+ elif os.path.exists('{}/cosyvoice3.yaml'.format(kwargs['model_dir'])):
+ return CosyVoice3(**kwargs)
+ else:
+ raise TypeError('No valid model type found!')
diff --git a/cosyvoice/cli/frontend.py b/cosyvoice/cli/frontend.py
index f98b0d6..0942da6 100644
--- a/cosyvoice/cli/frontend.py
+++ b/cosyvoice/cli/frontend.py
@@ -32,7 +32,7 @@ except ImportError:
from wetext import Normalizer as ZhNormalizer
from wetext import Normalizer as EnNormalizer
use_ttsfrd = False
-from cosyvoice.utils.file_utils import logging
+from cosyvoice.utils.file_utils import logging, load_wav
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph, is_only_punctuation
@@ -89,7 +89,8 @@ class CosyVoiceFrontEnd:
for i in range(text_token.shape[1]):
yield text_token[:, i: i + 1]
- def _extract_speech_token(self, speech):
+ def _extract_speech_token(self, prompt_wav):
+ speech = load_wav(prompt_wav, 16000)
assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
speech_token = self.speech_tokenizer_session.run(None,
@@ -101,7 +102,8 @@ class CosyVoiceFrontEnd:
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
return speech_token, speech_token_len
- def _extract_spk_embedding(self, speech):
+ def _extract_spk_embedding(self, prompt_wav):
+ speech = load_wav(prompt_wav, 16000)
feat = kaldi.fbank(speech,
num_mel_bins=80,
dither=0,
@@ -112,7 +114,8 @@ class CosyVoiceFrontEnd:
embedding = torch.tensor([embedding]).to(self.device)
return embedding
- def _extract_speech_feat(self, speech):
+ def _extract_speech_feat(self, prompt_wav):
+ speech = load_wav(prompt_wav, 24000)
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
speech_feat = speech_feat.unsqueeze(dim=0)
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
@@ -122,6 +125,9 @@ class CosyVoiceFrontEnd:
if isinstance(text, Generator):
logging.info('get tts_text generator, will skip text_normalize!')
return [text]
+ # NOTE skip text_frontend when ssml symbol in text
+ if '<|' in text and '|>' in text:
+ text_frontend = False
if text_frontend is False or text == '':
return [text] if split is True else text
text = text.strip()
@@ -154,19 +160,18 @@ class CosyVoiceFrontEnd:
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
return model_input
- def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
+ def frontend_zero_shot(self, tts_text, prompt_text, prompt_wav, resample_rate, zero_shot_spk_id):
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
if zero_shot_spk_id == '':
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
- prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
- speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
- speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
+ speech_feat, speech_feat_len = self._extract_speech_feat(prompt_wav)
+ speech_token, speech_token_len = self._extract_speech_token(prompt_wav)
if resample_rate == 24000:
# cosyvoice2, force speech_feat % speech_token = 2
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
- embedding = self._extract_spk_embedding(prompt_speech_16k)
+ embedding = self._extract_spk_embedding(prompt_wav)
model_input = {'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
@@ -178,8 +183,8 @@ class CosyVoiceFrontEnd:
model_input['text_len'] = tts_text_token_len
return model_input
- def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
- model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate, zero_shot_spk_id)
+ def frontend_cross_lingual(self, tts_text, prompt_wav, resample_rate, zero_shot_spk_id):
+ model_input = self.frontend_zero_shot(tts_text, '', prompt_wav, resample_rate, zero_shot_spk_id)
# in cross lingual mode, we remove prompt in llm
del model_input['prompt_text']
del model_input['prompt_text_len']
@@ -191,22 +196,21 @@ class CosyVoiceFrontEnd:
model_input = self.frontend_sft(tts_text, spk_id)
# in instruct mode, we remove spk_embedding in llm due to information leakage
del model_input['llm_embedding']
- instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '')
+ instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text)
model_input['prompt_text'] = instruct_text_token
model_input['prompt_text_len'] = instruct_text_token_len
return model_input
- def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
- model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate, zero_shot_spk_id)
+ def frontend_instruct2(self, tts_text, instruct_text, prompt_wav, resample_rate, zero_shot_spk_id):
+ model_input = self.frontend_zero_shot(tts_text, instruct_text, prompt_wav, resample_rate, zero_shot_spk_id)
del model_input['llm_prompt_speech_token']
del model_input['llm_prompt_speech_token_len']
return model_input
- def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
- prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
- prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
- prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
- embedding = self._extract_spk_embedding(prompt_speech_16k)
+ def frontend_vc(self, source_speech_16k, prompt_wav, resample_rate):
+ prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_wav)
+ prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_wav)
+ embedding = self._extract_spk_embedding(prompt_wav)
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
diff --git a/cosyvoice/cli/model.py b/cosyvoice/cli/model.py
index 9c8ac7e..8e67b0c 100644
--- a/cosyvoice/cli/model.py
+++ b/cosyvoice/cli/model.py
@@ -38,9 +38,6 @@ class CosyVoiceModel:
self.flow = flow
self.hift = hift
self.fp16 = fp16
- if self.fp16 is True:
- self.llm.half()
- self.flow.half()
self.token_min_hop_len = 2 * self.flow.input_frame_rate
self.token_max_hop_len = 4 * self.flow.input_frame_rate
self.token_overlap_len = 20
@@ -129,7 +126,7 @@ class CosyVoiceModel:
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
with torch.cuda.amp.autocast(self.fp16):
- tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
+ tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device, dtype=torch.int32),
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
prompt_token=prompt_token.to(self.device),
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
@@ -249,9 +246,6 @@ class CosyVoice2Model(CosyVoiceModel):
self.flow = flow
self.hift = hift
self.fp16 = fp16
- if self.fp16 is True:
- self.llm.half()
- self.flow.half()
# NOTE must matching training static_chunk_size
self.token_hop_len = 25
# hift cache
@@ -284,7 +278,7 @@ class CosyVoice2Model(CosyVoiceModel):
def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):
with torch.cuda.amp.autocast(self.fp16):
- tts_mel, _ = self.flow.inference(token=token.to(self.device),
+ tts_mel, _ = self.flow.inference(token=token.to(self.device, dtype=torch.int32),
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
prompt_token=prompt_token.to(self.device),
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
@@ -384,3 +378,53 @@ class CosyVoice2Model(CosyVoiceModel):
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.current_stream().synchronize()
+
+
+class CosyVoice3Model(CosyVoice2Model):
+
+ def __init__(self,
+ llm: torch.nn.Module,
+ flow: torch.nn.Module,
+ hift: torch.nn.Module,
+ fp16: bool = False):
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ self.llm = llm
+ self.flow = flow
+ self.hift = hift
+ self.fp16 = fp16
+ # NOTE must matching training static_chunk_size
+ self.token_hop_len = 25
+ # rtf and decoding related
+ self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
+ self.lock = threading.Lock()
+ # dict used to store session related variable
+ self.tts_speech_token_dict = {}
+ self.llm_end_dict = {}
+ self.hift_cache_dict = {}
+
+ def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):
+ with torch.cuda.amp.autocast(self.fp16):
+ tts_mel, _ = self.flow.inference(token=token.to(self.device, dtype=torch.int32),
+ token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
+ prompt_token=prompt_token.to(self.device),
+ prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
+ prompt_feat=prompt_feat.to(self.device),
+ prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
+ embedding=embedding.to(self.device),
+ streaming=stream,
+ finalize=finalize)
+ tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
+ # append mel cache
+ if self.hift_cache_dict[uuid] is not None:
+ hift_cache_mel = self.hift_cache_dict[uuid]['mel']
+ tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
+ self.hift_cache_dict[uuid]['mel'] = tts_mel
+ else:
+ self.hift_cache_dict[uuid] = {'mel': tts_mel, 'speech_offset': 0}
+ if speed != 1.0:
+ assert token_offset == 0 and finalize is True, 'speed change only support non-stream inference mode'
+ tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
+ tts_speech, _ = self.hift.inference(speech_feat=tts_mel, finalize=finalize)
+ tts_speech = tts_speech[:, self.hift_cache_dict[uuid]['speech_offset']:]
+ self.hift_cache_dict[uuid]['speech_offset'] += tts_speech.shape[1]
+ return tts_speech
diff --git a/cosyvoice/dataset/processor.py b/cosyvoice/dataset/processor.py
index 1eec976..f186ed2 100644
--- a/cosyvoice/dataset/processor.py
+++ b/cosyvoice/dataset/processor.py
@@ -242,6 +242,10 @@ def tokenize(data, get_tokenizer, allowed_special, mode='train'):
for sample in data:
assert 'text' in sample
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
+ if 'instruct' in sample:
+ sample['instruct_token'] = tokenizer.encode(sample['instruct'], allowed_special=allowed_special)
+ else:
+ sample['instruct_token'] = tokenizer.encode('', allowed_special=allowed_special)
yield sample
@@ -390,6 +394,9 @@ def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
+ instruct_token = [torch.tensor(sample[i]['instruct_token']) for i in order]
+ instruct_token_len = torch.tensor([i.size(0) for i in instruct_token], dtype=torch.int32)
+ instruct_token = pad_sequence(instruct_token, batch_first=True, padding_value=0)
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
batch = {
@@ -403,6 +410,8 @@ def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
"text": text,
"text_token": text_token,
"text_token_len": text_token_len,
+ "instruct_token": instruct_token,
+ "instruct_token_len": instruct_token_len,
"utt_embedding": utt_embedding,
"spk_embedding": spk_embedding,
}
diff --git a/cosyvoice/flow/DiT/dit.py b/cosyvoice/flow/DiT/dit.py
new file mode 100644
index 0000000..0d637e4
--- /dev/null
+++ b/cosyvoice/flow/DiT/dit.py
@@ -0,0 +1,176 @@
+
+"""
+ein notation:
+b - batch
+n - sequence
+nt - text sequence
+nw - raw wave length
+d - dimension
+"""
+
+from __future__ import annotations
+
+import torch
+from torch import nn
+import torch.nn.functional as F
+from einops import repeat
+from x_transformers.x_transformers import RotaryEmbedding
+from cosyvoice.utils.mask import add_optional_chunk_mask
+from cosyvoice.flow.DiT.modules import (
+ TimestepEmbedding,
+ ConvNeXtV2Block,
+ CausalConvPositionEmbedding,
+ DiTBlock,
+ AdaLayerNormZero_Final,
+ precompute_freqs_cis,
+ get_pos_embed_indices,
+)
+
+
+# Text embedding
+
+
+class TextEmbedding(nn.Module):
+ def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
+ super().__init__()
+ self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
+
+ if conv_layers > 0:
+ self.extra_modeling = True
+ self.precompute_max_pos = 4096 # ~44s of 24khz audio
+ self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
+ self.text_blocks = nn.Sequential(
+ *[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
+ )
+ else:
+ self.extra_modeling = False
+
+ def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
+ batch, text_len = text.shape[0], text.shape[1]
+ text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
+ text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
+ text = F.pad(text, (0, seq_len - text_len), value=0)
+
+ if drop_text: # cfg for text
+ text = torch.zeros_like(text)
+
+ text = self.text_embed(text) # b n -> b n d
+
+ # possible extra modeling
+ if self.extra_modeling:
+ # sinus pos emb
+ batch_start = torch.zeros((batch,), dtype=torch.long)
+ pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
+ text_pos_embed = self.freqs_cis[pos_idx]
+ text = text + text_pos_embed
+
+ # convnextv2 blocks
+ text = self.text_blocks(text)
+
+ return text
+
+
+# noised input audio and context mixing embedding
+
+
+class InputEmbedding(nn.Module):
+ def __init__(self, mel_dim, text_dim, out_dim, spk_dim=None):
+ super().__init__()
+ spk_dim = 0 if spk_dim is None else spk_dim
+ self.spk_dim = spk_dim
+ self.proj = nn.Linear(mel_dim * 2 + text_dim + spk_dim, out_dim)
+ self.conv_pos_embed = CausalConvPositionEmbedding(dim=out_dim)
+
+ def forward(
+ self,
+ x: float["b n d"],
+ cond: float["b n d"],
+ text_embed: float["b n d"],
+ spks: float["b d"],
+ ):
+ to_cat = [x, cond, text_embed]
+ if self.spk_dim > 0:
+ spks = repeat(spks, "b c -> b t c", t=x.shape[1])
+ to_cat.append(spks)
+
+ x = self.proj(torch.cat(to_cat, dim=-1))
+ x = self.conv_pos_embed(x) + x
+ return x
+
+
+# Transformer backbone using DiT blocks
+
+
+class DiT(nn.Module):
+ def __init__(
+ self,
+ *,
+ dim,
+ depth=8,
+ heads=8,
+ dim_head=64,
+ dropout=0.1,
+ ff_mult=4,
+ mel_dim=80,
+ mu_dim=None,
+ long_skip_connection=False,
+ spk_dim=None,
+ out_channels=None,
+ static_chunk_size=50,
+ num_decoding_left_chunks=2
+ ):
+ super().__init__()
+
+ self.time_embed = TimestepEmbedding(dim)
+ if mu_dim is None:
+ mu_dim = mel_dim
+ self.input_embed = InputEmbedding(mel_dim, mu_dim, dim, spk_dim)
+
+ self.rotary_embed = RotaryEmbedding(dim_head)
+
+ self.dim = dim
+ self.depth = depth
+
+ self.transformer_blocks = nn.ModuleList(
+ [DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout) for _ in range(depth)]
+ )
+ self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None
+
+ self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
+ self.proj_out = nn.Linear(dim, mel_dim)
+ self.out_channels = out_channels
+ self.static_chunk_size = static_chunk_size
+ self.num_decoding_left_chunks = num_decoding_left_chunks
+
+ def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
+ x = x.transpose(1, 2)
+ mu = mu.transpose(1, 2)
+ cond = cond.transpose(1, 2)
+ spks = spks.unsqueeze(dim=1)
+ batch, seq_len = x.shape[0], x.shape[1]
+ if t.ndim == 0:
+ t = t.repeat(batch)
+
+ # t: conditioning time, c: context (text + masked cond audio), x: noised input audio
+ t = self.time_embed(t)
+ x = self.input_embed(x, cond, mu, spks.squeeze(1))
+
+ rope = self.rotary_embed.forward_from_seq_len(seq_len)
+
+ if self.long_skip_connection is not None:
+ residual = x
+
+ if streaming is True:
+ attn_mask = add_optional_chunk_mask(x, mask.bool(), False, False, 0, self.static_chunk_size, -1).unsqueeze(dim=1)
+ else:
+ attn_mask = add_optional_chunk_mask(x, mask.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1).unsqueeze(dim=1)
+
+ for block in self.transformer_blocks:
+ x = block(x, t, mask=attn_mask.bool(), rope=rope)
+
+ if self.long_skip_connection is not None:
+ x = self.long_skip_connection(torch.cat((x, residual), dim=-1))
+
+ x = self.norm_out(x, t)
+ output = self.proj_out(x).transpose(1, 2)
+ return output
diff --git a/cosyvoice/flow/DiT/modules.py b/cosyvoice/flow/DiT/modules.py
new file mode 100644
index 0000000..be8caec
--- /dev/null
+++ b/cosyvoice/flow/DiT/modules.py
@@ -0,0 +1,616 @@
+
+"""
+ein notation:
+b - batch
+n - sequence
+nt - text sequence
+nw - raw wave length
+d - dimension
+"""
+
+from __future__ import annotations
+from typing import Optional
+import math
+
+import torch
+from torch import nn
+import torch.nn.functional as F
+import torchaudio
+
+from x_transformers.x_transformers import apply_rotary_pos_emb
+
+
+# raw wav to mel spec
+class MelSpec(nn.Module):
+ def __init__(
+ self,
+ filter_length=1024,
+ hop_length=256,
+ win_length=1024,
+ n_mel_channels=100,
+ target_sample_rate=24_000,
+ normalize=False,
+ power=1,
+ norm=None,
+ center=True,
+ ):
+ super().__init__()
+ self.n_mel_channels = n_mel_channels
+
+ self.mel_stft = torchaudio.transforms.MelSpectrogram(
+ sample_rate=target_sample_rate,
+ n_fft=filter_length,
+ win_length=win_length,
+ hop_length=hop_length,
+ n_mels=n_mel_channels,
+ power=power,
+ center=center,
+ normalized=normalize,
+ norm=norm,
+ )
+
+ self.register_buffer("dummy", torch.tensor(0), persistent=False)
+
+ def forward(self, inp):
+ if len(inp.shape) == 3:
+ inp = inp.squeeze(1) # 'b 1 nw -> b nw'
+
+ assert len(inp.shape) == 2
+
+ if self.dummy.device != inp.device:
+ self.to(inp.device)
+
+ mel = self.mel_stft(inp)
+ mel = mel.clamp(min=1e-5).log()
+ return mel
+
+
+# sinusoidal position embedding
+
+
+class SinusPositionEmbedding(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.dim = dim
+
+ def forward(self, x, scale=1000):
+ device = x.device
+ half_dim = self.dim // 2
+ emb = math.log(10000) / (half_dim - 1)
+ emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
+ emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
+ emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
+ return emb
+
+
+# convolutional position embedding
+
+
+class ConvPositionEmbedding(nn.Module):
+ def __init__(self, dim, kernel_size=31, groups=16):
+ super().__init__()
+ assert kernel_size % 2 != 0
+ self.conv1d = nn.Sequential(
+ nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
+ nn.Mish(),
+ nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
+ nn.Mish(),
+ )
+
+ def forward(self, x: float["b n d"], mask: bool["b n"] | None = None): # noqa: F722
+ if mask is not None:
+ mask = mask[..., None]
+ x = x.masked_fill(~mask, 0.0)
+
+ x = x.permute(0, 2, 1)
+ x = self.conv1d(x)
+ out = x.permute(0, 2, 1)
+
+ if mask is not None:
+ out = out.masked_fill(~mask, 0.0)
+
+ return out
+
+
+class CausalConvPositionEmbedding(nn.Module):
+ def __init__(self, dim, kernel_size=31, groups=16):
+ super().__init__()
+ assert kernel_size % 2 != 0
+ self.kernel_size = kernel_size
+ self.conv1 = nn.Sequential(
+ nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=0),
+ nn.Mish(),
+ )
+ self.conv2 = nn.Sequential(
+ nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=0),
+ nn.Mish(),
+ )
+
+ def forward(self, x: float["b n d"], mask: bool["b n"] | None = None): # noqa: F722
+ if mask is not None:
+ mask = mask[..., None]
+ x = x.masked_fill(~mask, 0.0)
+
+ x = x.permute(0, 2, 1)
+ x = F.pad(x, (self.kernel_size - 1, 0, 0, 0))
+ x = self.conv1(x)
+ x = F.pad(x, (self.kernel_size - 1, 0, 0, 0))
+ x = self.conv2(x)
+ out = x.permute(0, 2, 1)
+
+ if mask is not None:
+ out = out.masked_fill(~mask, 0.0)
+
+ return out
+
+
+# rotary positional embedding related
+
+
+def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.0):
+ # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
+ # has some connection to NTK literature
+ # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
+ # https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
+ theta *= theta_rescale_factor ** (dim / (dim - 2))
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
+ t = torch.arange(end, device=freqs.device) # type: ignore
+ freqs = torch.outer(t, freqs).float() # type: ignore
+ freqs_cos = torch.cos(freqs) # real part
+ freqs_sin = torch.sin(freqs) # imaginary part
+ return torch.cat([freqs_cos, freqs_sin], dim=-1)
+
+
+def get_pos_embed_indices(start, length, max_pos, scale=1.0):
+ # length = length if isinstance(length, int) else length.max()
+ scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar
+ pos = (
+ start.unsqueeze(1)
+ + (torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) * scale.unsqueeze(1)).long()
+ )
+ # avoid extra long error.
+ pos = torch.where(pos < max_pos, pos, max_pos - 1)
+ return pos
+
+
+# Global Response Normalization layer (Instance Normalization ?)
+
+
+class GRN(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
+ self.beta = nn.Parameter(torch.zeros(1, 1, dim))
+
+ def forward(self, x):
+ Gx = torch.norm(x, p=2, dim=1, keepdim=True)
+ Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
+ return self.gamma * (x * Nx) + self.beta + x
+
+
+# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
+# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108
+
+
+class ConvNeXtV2Block(nn.Module):
+ def __init__(
+ self,
+ dim: int,
+ intermediate_dim: int,
+ dilation: int = 1,
+ ):
+ super().__init__()
+ padding = (dilation * (7 - 1)) // 2
+ self.dwconv = nn.Conv1d(
+ dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
+ ) # depthwise conv
+ self.norm = nn.LayerNorm(dim, eps=1e-6)
+ self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
+ self.act = nn.GELU()
+ self.grn = GRN(intermediate_dim)
+ self.pwconv2 = nn.Linear(intermediate_dim, dim)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ residual = x
+ x = x.transpose(1, 2) # b n d -> b d n
+ x = self.dwconv(x)
+ x = x.transpose(1, 2) # b d n -> b n d
+ x = self.norm(x)
+ x = self.pwconv1(x)
+ x = self.act(x)
+ x = self.grn(x)
+ x = self.pwconv2(x)
+ return residual + x
+
+
+# AdaLayerNormZero
+# return with modulated x for attn input, and params for later mlp modulation
+
+
+class AdaLayerNormZero(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+
+ self.silu = nn.SiLU()
+ self.linear = nn.Linear(dim, dim * 6)
+
+ self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
+
+ def forward(self, x, emb=None):
+ emb = self.linear(self.silu(emb))
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
+
+ x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
+ return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
+
+
+# AdaLayerNormZero for final layer
+# return only with modulated x for attn input, cuz no more mlp modulation
+
+
+class AdaLayerNormZero_Final(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+
+ self.silu = nn.SiLU()
+ self.linear = nn.Linear(dim, dim * 2)
+
+ self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
+
+ def forward(self, x, emb):
+ emb = self.linear(self.silu(emb))
+ scale, shift = torch.chunk(emb, 2, dim=1)
+
+ x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
+ return x
+
+
+# FeedForward
+
+
+class FeedForward(nn.Module):
+ def __init__(self, dim, dim_out=None, mult=4, dropout=0.0, approximate: str = "none"):
+ super().__init__()
+ inner_dim = int(dim * mult)
+ dim_out = dim_out if dim_out is not None else dim
+
+ activation = nn.GELU(approximate=approximate)
+ project_in = nn.Sequential(nn.Linear(dim, inner_dim), activation)
+ self.ff = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
+
+ def forward(self, x):
+ return self.ff(x)
+
+
+# Attention with possible joint part
+# modified from diffusers/src/diffusers/models/attention_processor.py
+
+
+class Attention(nn.Module):
+ def __init__(
+ self,
+ processor: JointAttnProcessor | AttnProcessor,
+ dim: int,
+ heads: int = 8,
+ dim_head: int = 64,
+ dropout: float = 0.0,
+ context_dim: Optional[int] = None, # if not None -> joint attention
+ context_pre_only=None,
+ ):
+ super().__init__()
+
+ if not hasattr(F, "scaled_dot_product_attention"):
+ raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
+
+ self.processor = processor
+
+ self.dim = dim
+ self.heads = heads
+ self.inner_dim = dim_head * heads
+ self.dropout = dropout
+
+ self.context_dim = context_dim
+ self.context_pre_only = context_pre_only
+
+ self.to_q = nn.Linear(dim, self.inner_dim)
+ self.to_k = nn.Linear(dim, self.inner_dim)
+ self.to_v = nn.Linear(dim, self.inner_dim)
+
+ if self.context_dim is not None:
+ self.to_k_c = nn.Linear(context_dim, self.inner_dim)
+ self.to_v_c = nn.Linear(context_dim, self.inner_dim)
+ if self.context_pre_only is not None:
+ self.to_q_c = nn.Linear(context_dim, self.inner_dim)
+
+ self.to_out = nn.ModuleList([])
+ self.to_out.append(nn.Linear(self.inner_dim, dim))
+ self.to_out.append(nn.Dropout(dropout))
+
+ if self.context_pre_only is not None and not self.context_pre_only:
+ self.to_out_c = nn.Linear(self.inner_dim, dim)
+
+ def forward(
+ self,
+ x: float["b n d"], # noised input x # noqa: F722
+ c: float["b n d"] = None, # context c # noqa: F722
+ mask: bool["b n"] | None = None, # noqa: F722
+ rope=None, # rotary position embedding for x
+ c_rope=None, # rotary position embedding for c
+ ) -> torch.Tensor:
+ if c is not None:
+ return self.processor(self, x, c=c, mask=mask, rope=rope, c_rope=c_rope)
+ else:
+ return self.processor(self, x, mask=mask, rope=rope)
+
+
+# Attention processor
+
+
+class AttnProcessor:
+ def __init__(self):
+ pass
+
+ def __call__(
+ self,
+ attn: Attention,
+ x: float["b n d"], # noised input x # noqa: F722
+ mask: bool["b n"] | None = None, # noqa: F722
+ rope=None, # rotary position embedding
+ ) -> torch.FloatTensor:
+ batch_size = x.shape[0]
+
+ # `sample` projections.
+ query = attn.to_q(x)
+ key = attn.to_k(x)
+ value = attn.to_v(x)
+
+ # apply rotary position embedding
+ if rope is not None:
+ freqs, xpos_scale = rope
+ q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
+
+ query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
+ key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
+
+ # attention
+ inner_dim = key.shape[-1]
+ head_dim = inner_dim // attn.heads
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+
+ # mask. e.g. inference got a batch with different target durations, mask out the padding
+ if mask is not None:
+ attn_mask = mask
+ if attn_mask.dim() == 2:
+ attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
+ attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
+ else:
+ attn_mask = None
+
+ x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
+ x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
+ x = x.to(query.dtype)
+
+ # linear proj
+ x = attn.to_out[0](x)
+ # dropout
+ x = attn.to_out[1](x)
+
+ if mask is not None:
+ if mask.dim() == 2:
+ mask = mask.unsqueeze(-1)
+ else:
+ mask = mask[:, 0, -1].unsqueeze(-1)
+ x = x.masked_fill(~mask, 0.0)
+
+ return x
+
+
+# Joint Attention processor for MM-DiT
+# modified from diffusers/src/diffusers/models/attention_processor.py
+
+
+class JointAttnProcessor:
+ def __init__(self):
+ pass
+
+ def __call__(
+ self,
+ attn: Attention,
+ x: float["b n d"], # noised input x # noqa: F722
+ c: float["b nt d"] = None, # context c, here text # noqa: F722
+ mask: bool["b n"] | None = None, # noqa: F722
+ rope=None, # rotary position embedding for x
+ c_rope=None, # rotary position embedding for c
+ ) -> torch.FloatTensor:
+ residual = x
+
+ batch_size = c.shape[0]
+
+ # `sample` projections.
+ query = attn.to_q(x)
+ key = attn.to_k(x)
+ value = attn.to_v(x)
+
+ # `context` projections.
+ c_query = attn.to_q_c(c)
+ c_key = attn.to_k_c(c)
+ c_value = attn.to_v_c(c)
+
+ # apply rope for context and noised input independently
+ if rope is not None:
+ freqs, xpos_scale = rope
+ q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
+ query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
+ key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
+ if c_rope is not None:
+ freqs, xpos_scale = c_rope
+ q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
+ c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
+ c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
+
+ # attention
+ query = torch.cat([query, c_query], dim=1)
+ key = torch.cat([key, c_key], dim=1)
+ value = torch.cat([value, c_value], dim=1)
+
+ inner_dim = key.shape[-1]
+ head_dim = inner_dim // attn.heads
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+
+ # mask. e.g. inference got a batch with different target durations, mask out the padding
+ if mask is not None:
+ attn_mask = F.pad(mask, (0, c.shape[1]), value=True) # no mask for c (text)
+ attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
+ attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
+ else:
+ attn_mask = None
+
+ x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
+ x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
+ x = x.to(query.dtype)
+
+ # Split the attention outputs.
+ x, c = (
+ x[:, : residual.shape[1]],
+ x[:, residual.shape[1]:],
+ )
+
+ # linear proj
+ x = attn.to_out[0](x)
+ # dropout
+ x = attn.to_out[1](x)
+ if not attn.context_pre_only:
+ c = attn.to_out_c(c)
+
+ if mask is not None:
+ mask = mask.unsqueeze(-1)
+ x = x.masked_fill(~mask, 0.0)
+ # c = c.masked_fill(~mask, 0.) # no mask for c (text)
+
+ return x, c
+
+
+# DiT Block
+
+
+class DiTBlock(nn.Module):
+ def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1):
+ super().__init__()
+
+ self.attn_norm = AdaLayerNormZero(dim)
+ self.attn = Attention(
+ processor=AttnProcessor(),
+ dim=dim,
+ heads=heads,
+ dim_head=dim_head,
+ dropout=dropout,
+ )
+
+ self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
+ self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
+
+ def forward(self, x, t, mask=None, rope=None): # x: noised input, t: time embedding
+ # pre-norm & modulation for attention input
+ norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
+
+ # attention
+ attn_output = self.attn(x=norm, mask=mask, rope=rope)
+
+ # process attention output for input x
+ x = x + gate_msa.unsqueeze(1) * attn_output
+
+ ff_norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
+ ff_output = self.ff(ff_norm)
+ x = x + gate_mlp.unsqueeze(1) * ff_output
+
+ return x
+
+
+# MMDiT Block https://arxiv.org/abs/2403.03206
+
+
+class MMDiTBlock(nn.Module):
+ r"""
+ modified from diffusers/src/diffusers/models/attention.py
+
+ notes.
+ _c: context related. text, cond, etc. (left part in sd3 fig2.b)
+ _x: noised input related. (right part)
+ context_pre_only: last layer only do prenorm + modulation cuz no more ffn
+ """
+
+ def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_pre_only=False):
+ super().__init__()
+
+ self.context_pre_only = context_pre_only
+
+ self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim)
+ self.attn_norm_x = AdaLayerNormZero(dim)
+ self.attn = Attention(
+ processor=JointAttnProcessor(),
+ dim=dim,
+ heads=heads,
+ dim_head=dim_head,
+ dropout=dropout,
+ context_dim=dim,
+ context_pre_only=context_pre_only,
+ )
+
+ if not context_pre_only:
+ self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
+ self.ff_c = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
+ else:
+ self.ff_norm_c = None
+ self.ff_c = None
+ self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
+ self.ff_x = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
+
+ def forward(self, x, c, t, mask=None, rope=None, c_rope=None): # x: noised input, c: context, t: time embedding
+ # pre-norm & modulation for attention input
+ if self.context_pre_only:
+ norm_c = self.attn_norm_c(c, t)
+ else:
+ norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t)
+ norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t)
+
+ # attention
+ x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope)
+
+ # process attention output for context c
+ if self.context_pre_only:
+ c = None
+ else: # if not last layer
+ c = c + c_gate_msa.unsqueeze(1) * c_attn_output
+
+ norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
+ c_ff_output = self.ff_c(norm_c)
+ c = c + c_gate_mlp.unsqueeze(1) * c_ff_output
+
+ # process attention output for input x
+ x = x + x_gate_msa.unsqueeze(1) * x_attn_output
+
+ norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None]
+ x_ff_output = self.ff_x(norm_x)
+ x = x + x_gate_mlp.unsqueeze(1) * x_ff_output
+
+ return c, x
+
+
+# time step conditioning embedding
+
+
+class TimestepEmbedding(nn.Module):
+ def __init__(self, dim, freq_embed_dim=256):
+ super().__init__()
+ self.time_embed = SinusPositionEmbedding(freq_embed_dim)
+ self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
+
+ def forward(self, timestep: float["b"]): # noqa: F821
+ time_hidden = self.time_embed(timestep)
+ time_hidden = time_hidden.to(timestep.dtype)
+ time = self.time_mlp(time_hidden) # b d
+ return time
diff --git a/cosyvoice/flow/flow.py b/cosyvoice/flow/flow.py
index a068288..d07c181 100644
--- a/cosyvoice/flow/flow.py
+++ b/cosyvoice/flow/flow.py
@@ -37,14 +37,11 @@ class MaskedDiffWithXvec(torch.nn.Module):
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
- 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
- mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
- 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
+ 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}}):
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.decoder_conf = decoder_conf
- self.mel_feat_conf = mel_feat_conf
self.vocab_size = vocab_size
self.output_type = output_type
self.input_frame_rate = input_frame_rate
@@ -165,14 +162,11 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
- 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
- mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
- 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
+ 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}}):
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.decoder_conf = decoder_conf
- self.mel_feat_conf = mel_feat_conf
self.vocab_size = vocab_size
self.output_type = output_type
self.input_frame_rate = input_frame_rate
@@ -279,3 +273,160 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
feat = feat[:, :, mel_len1:]
assert feat.shape[2] == mel_len2
return feat.float(), None
+
+
+class CausalMaskedDiffWithDiT(torch.nn.Module):
+ def __init__(self,
+ input_size: int = 512,
+ output_size: int = 80,
+ spk_embed_dim: int = 192,
+ output_type: str = "mel",
+ vocab_size: int = 4096,
+ input_frame_rate: int = 50,
+ only_mask_loss: bool = True,
+ token_mel_ratio: int = 2,
+ pre_lookahead_len: int = 3,
+ pre_lookahead_layer: torch.nn.Module = None,
+ decoder: torch.nn.Module = None,
+ decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
+ 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
+ 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
+ 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
+ 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}}):
+ super().__init__()
+ self.input_size = input_size
+ self.output_size = output_size
+ self.decoder_conf = decoder_conf
+ self.vocab_size = vocab_size
+ self.output_type = output_type
+ self.input_frame_rate = input_frame_rate
+ logging.info(f"input frame rate={self.input_frame_rate}")
+ self.input_embedding = nn.Embedding(vocab_size, input_size)
+ self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
+ self.pre_lookahead_len = pre_lookahead_len
+ self.pre_lookahead_layer = pre_lookahead_layer
+ self.decoder = decoder
+ self.only_mask_loss = only_mask_loss
+ self.token_mel_ratio = token_mel_ratio
+
+ def forward(
+ self,
+ batch: dict,
+ device: torch.device,
+ ) -> Dict[str, Optional[torch.Tensor]]:
+ token = batch['speech_token'].to(device)
+ token_len = batch['speech_token_len'].to(device)
+ feat = batch['speech_feat'].to(device)
+ feat_len = batch['speech_feat_len'].to(device)
+ embedding = batch['embedding'].to(device)
+
+ # NOTE unified training, static_chunk_size > 0 or = 0
+ streaming = True if random.random() < 0.5 else False
+
+ # xvec projection
+ embedding = F.normalize(embedding, dim=1)
+ embedding = self.spk_embed_affine_layer(embedding)
+
+ # concat text and prompt_text
+ mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
+ token = self.input_embedding(torch.clamp(token, min=0)) * mask
+
+ # text encode
+ h, h_lengths = self.encoder(token, token_len, streaming=streaming)
+ h = self.encoder_proj(h)
+
+ # get conditions
+ conds = torch.zeros(feat.shape, device=token.device)
+ for i, j in enumerate(feat_len):
+ if random.random() < 0.5:
+ continue
+ index = random.randint(0, int(0.3 * j))
+ conds[i, :index] = feat[i, :index]
+ conds = conds.transpose(1, 2)
+
+ mask = (~make_pad_mask(h_lengths.sum(dim=-1).squeeze(dim=1))).to(h)
+ loss, _ = self.decoder.compute_loss(
+ feat.transpose(1, 2).contiguous(),
+ mask.unsqueeze(1),
+ h.transpose(1, 2).contiguous(),
+ embedding,
+ cond=conds,
+ streaming=streaming,
+ )
+ return {'loss': loss}
+
+ @torch.inference_mode()
+ def inference(self,
+ token,
+ token_len,
+ prompt_token,
+ prompt_token_len,
+ prompt_feat,
+ prompt_feat_len,
+ embedding,
+ streaming,
+ finalize):
+ assert token.shape[0] == 1
+ # xvec projection
+ embedding = F.normalize(embedding, dim=1)
+ embedding = self.spk_embed_affine_layer(embedding)
+
+ # concat text and prompt_text
+ token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
+ mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
+ token = self.input_embedding(torch.clamp(token, min=0)) * mask
+
+ # text encode
+ if finalize is True:
+ h = self.pre_lookahead_layer(token)
+ else:
+ h = self.pre_lookahead_layer(token[:, :-self.pre_lookahead_len], context=token[:, -self.pre_lookahead_len:])
+ h = h.repeat_interleave(self.token_mel_ratio, dim=1)
+ mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
+
+ # get conditions
+ conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
+ conds[:, :mel_len1] = prompt_feat
+ conds = conds.transpose(1, 2)
+
+ mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
+ feat, _ = self.decoder(
+ mu=h.transpose(1, 2).contiguous(),
+ mask=mask.unsqueeze(1),
+ spks=embedding,
+ cond=conds,
+ n_timesteps=10,
+ streaming=streaming
+ )
+ feat = feat[:, :, mel_len1:]
+ assert feat.shape[2] == mel_len2
+ return feat.float(), None
+
+
+if __name__ == '__main__':
+ torch.backends.cudnn.deterministic = True
+ torch.backends.cudnn.benchmark = False
+ from hyperpyyaml import load_hyperpyyaml
+ with open('./pretrained_models/Fun-CosyVoice3-0.5B/cosyvoice3.yaml', 'r') as f:
+ configs = load_hyperpyyaml(f, overrides={'llm': None, 'hift': None})
+ model = configs['flow']
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ model.to(device)
+ model.eval()
+ max_len = 10 * model.decoder.estimator.static_chunk_size
+ chunk_size = model.decoder.estimator.static_chunk_size
+ context_size = model.pre_lookahead_layer.pre_lookahead_len
+ token = torch.randint(0, 6561, size=(1, max_len)).to(device)
+ token_len = torch.tensor([max_len]).to(device)
+ prompt_token = torch.randint(0, 6561, size=(1, chunk_size)).to(device)
+ prompt_token_len = torch.tensor([chunk_size]).to(device)
+ prompt_feat = torch.rand(1, chunk_size * 2, 80).to(device)
+ prompt_feat_len = torch.tensor([chunk_size * 2]).to(device)
+ prompt_embedding = torch.rand(1, 192).to(device)
+ pred_gt, _ = model.inference(token, token_len, prompt_token, prompt_token_len, prompt_feat, prompt_feat_len, prompt_embedding, streaming=True, finalize=True)
+ for i in range(0, max_len, chunk_size):
+ finalize = True if i + chunk_size + context_size >= max_len else False
+ pred_chunk, _ = model.inference(token[:, :i + chunk_size + context_size], torch.tensor([token[:, :i + chunk_size + context_size].shape[1]]).to(device),
+ prompt_token, prompt_token_len, prompt_feat, prompt_feat_len, prompt_embedding, streaming=True, finalize=finalize)
+ pred_chunk = pred_chunk[:, :, i * model.token_mel_ratio:]
+ print((pred_gt[:, :, i * model.token_mel_ratio: i * model.token_mel_ratio + pred_chunk.shape[2]] - pred_chunk).abs().max().item())
diff --git a/cosyvoice/flow/flow_matching.py b/cosyvoice/flow/flow_matching.py
index 7f92df5..a45337a 100644
--- a/cosyvoice/flow/flow_matching.py
+++ b/cosyvoice/flow/flow_matching.py
@@ -91,12 +91,13 @@ class ConditionalCFM(BASECFM):
sol = []
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
- x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
- mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
- mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
- t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
- spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
- cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
+ # NOTE when flow run in amp mode, x.dtype is float32, which cause nan in trt fp16 inference, so set dtype=spks.dtype
+ x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=spks.dtype)
+ mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=spks.dtype)
+ mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=spks.dtype)
+ t_in = torch.zeros([2], device=x.device, dtype=spks.dtype)
+ spks_in = torch.zeros([2, 80], device=x.device, dtype=spks.dtype)
+ cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=spks.dtype)
for step in range(1, len(t_span)):
# Classifier-Free Guidance inference introduced in VoiceBox
x_in[:] = x
diff --git a/cosyvoice/hifigan/f0_predictor.py b/cosyvoice/hifigan/f0_predictor.py
index 5797c31..c896890 100644
--- a/cosyvoice/hifigan/f0_predictor.py
+++ b/cosyvoice/hifigan/f0_predictor.py
@@ -17,6 +17,7 @@ try:
from torch.nn.utils.parametrizations import weight_norm
except ImportError:
from torch.nn.utils import weight_norm
+from cosyvoice.transformer.convolution import CausalConv1d
class ConvRNNF0Predictor(nn.Module):
@@ -56,3 +57,47 @@ class ConvRNNF0Predictor(nn.Module):
x = self.condnet(x)
x = x.transpose(1, 2)
return torch.abs(self.classifier(x).squeeze(-1))
+
+
+class CausalConvRNNF0Predictor(nn.Module):
+ def __init__(self,
+ num_class: int = 1,
+ in_channels: int = 80,
+ cond_channels: int = 512
+ ):
+ super().__init__()
+
+ self.num_class = num_class
+ self.condnet = nn.Sequential(
+ weight_norm(
+ CausalConv1d(in_channels, cond_channels, kernel_size=4, causal_type='right')
+ ),
+ nn.ELU(),
+ weight_norm(
+ CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
+ ),
+ nn.ELU(),
+ weight_norm(
+ CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
+ ),
+ nn.ELU(),
+ weight_norm(
+ CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
+ ),
+ nn.ELU(),
+ weight_norm(
+ CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
+ ),
+ nn.ELU(),
+ )
+ self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
+
+ def forward(self, x: torch.Tensor, finalize: bool = True) -> torch.Tensor:
+ if finalize is True:
+ x = self.condnet[0](x)
+ else:
+ x = self.condnet[0](x[:, :, :-self.condnet[0].causal_padding], x[:, :, -self.condnet[0].causal_padding:])
+ for i in range(1, len(self.condnet)):
+ x = self.condnet[i](x)
+ x = x.transpose(1, 2)
+ return torch.abs(self.classifier(x).squeeze(-1))
diff --git a/cosyvoice/hifigan/generator.py b/cosyvoice/hifigan/generator.py
index 326a1a7..045cb4e 100644
--- a/cosyvoice/hifigan/generator.py
+++ b/cosyvoice/hifigan/generator.py
@@ -28,7 +28,7 @@ try:
except ImportError:
from torch.nn.utils import weight_norm
from torch.distributions.uniform import Uniform
-
+from cosyvoice.transformer.convolution import CausalConv1d, CausalConv1dDownSample, CausalConv1dUpsample
from cosyvoice.transformer.activation import Snake
from cosyvoice.utils.common import get_padding
from cosyvoice.utils.common import init_weights
@@ -50,8 +50,10 @@ class ResBlock(torch.nn.Module):
channels: int = 512,
kernel_size: int = 3,
dilations: List[int] = [1, 3, 5],
+ causal: bool = False,
):
super(ResBlock, self).__init__()
+ self.causal = causal
self.convs1 = nn.ModuleList()
self.convs2 = nn.ModuleList()
@@ -64,7 +66,14 @@ class ResBlock(torch.nn.Module):
kernel_size,
1,
dilation=dilation,
- padding=get_padding(kernel_size, dilation)
+ padding=get_padding(kernel_size, dilation)) if causal is False else
+ CausalConv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation,
+ causal_type='left'
)
)
)
@@ -76,7 +85,14 @@ class ResBlock(torch.nn.Module):
kernel_size,
1,
dilation=1,
- padding=get_padding(kernel_size, 1)
+ padding=get_padding(kernel_size, 1)) if causal is False else
+ CausalConv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ causal_type='left'
)
)
)
@@ -139,11 +155,13 @@ class SineGen(torch.nn.Module):
@torch.no_grad()
def forward(self, f0):
+ """ sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, dim=1, length)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
"""
- :param f0: [B, 1, sample_len], Hz
- :return: [B, 1, sample_len]
- """
-
+ f0 = f0.transpose(1, 2)
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
for i in range(self.harmonic_num + 1):
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
@@ -168,59 +186,7 @@ class SineGen(torch.nn.Module):
# first: set the unvoiced part to 0 by uv
# then: additive noise
sine_waves = sine_waves * uv + noise
- return sine_waves, uv, noise
-
-
-class SourceModuleHnNSF(torch.nn.Module):
- """ SourceModule for hn-nsf
- SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
- add_noise_std=0.003, voiced_threshod=0)
- sampling_rate: sampling_rate in Hz
- harmonic_num: number of harmonic above F0 (default: 0)
- sine_amp: amplitude of sine source signal (default: 0.1)
- add_noise_std: std of additive Gaussian noise (default: 0.003)
- note that amplitude of noise in unvoiced is decided
- by sine_amp
- voiced_threshold: threhold to set U/V given F0 (default: 0)
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
- F0_sampled (batchsize, length, 1)
- Sine_source (batchsize, length, 1)
- noise_source (batchsize, length 1)
- uv (batchsize, length, 1)
- """
-
- def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
- add_noise_std=0.003, voiced_threshod=0):
- super(SourceModuleHnNSF, self).__init__()
-
- self.sine_amp = sine_amp
- self.noise_std = add_noise_std
-
- # to produce sine waveforms
- self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
- sine_amp, add_noise_std, voiced_threshod)
-
- # to merge source harmonics into a single excitation
- self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
- self.l_tanh = torch.nn.Tanh()
-
- def forward(self, x):
- """
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
- F0_sampled (batchsize, length, 1)
- Sine_source (batchsize, length, 1)
- noise_source (batchsize, length 1)
- """
- # source for harmonic branch
- with torch.no_grad():
- sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
- sine_wavs = sine_wavs.transpose(1, 2)
- uv = uv.transpose(1, 2)
- sine_merge = self.l_tanh(self.l_linear(sine_wavs))
-
- # source for noise branch, in the same shape as uv
- noise = torch.randn_like(uv) * self.sine_amp / 3
- return sine_merge, noise, uv
+ return sine_waves.transpose(1, 2), uv.transpose(1, 2), noise
class SineGen2(torch.nn.Module):
@@ -242,7 +208,8 @@ class SineGen2(torch.nn.Module):
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
sine_amp=0.1, noise_std=0.003,
voiced_threshold=0,
- flag_for_pulse=False):
+ flag_for_pulse=False,
+ causal=False):
super(SineGen2, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
@@ -252,6 +219,11 @@ class SineGen2(torch.nn.Module):
self.voiced_threshold = voiced_threshold
self.flag_for_pulse = flag_for_pulse
self.upsample_scale = upsample_scale
+ self.causal = causal
+ if causal is True:
+ self.rand_ini = torch.rand(1, 9)
+ self.rand_ini[:, 0] = 0
+ self.sine_waves = torch.rand(1, 300 * 24000, 9)
def _f02uv(self, f0):
# generate uv signal
@@ -267,9 +239,12 @@ class SineGen2(torch.nn.Module):
rad_values = (f0_values / self.sampling_rate) % 1
# initial phase noise (no noise for fundamental component)
- rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], device=f0_values.device)
- rand_ini[:, 0] = 0
- rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ if self.training is False and self.causal is True:
+ rad_values[:, 0, :] = rad_values[:, 0, :] + self.rand_ini.to(rad_values.device)
+ else:
+ rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], device=f0_values.device)
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
if not self.flag_for_pulse:
@@ -279,7 +254,7 @@ class SineGen2(torch.nn.Module):
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
- scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
+ scale_factor=self.upsample_scale, mode="nearest" if self.causal is True else 'linear').transpose(1, 2)
sines = torch.sin(phase)
else:
# If necessary, make sure that the first time step of every
@@ -331,7 +306,10 @@ class SineGen2(torch.nn.Module):
# std = self.sine_amp/3 -> max value ~ self.sine_amp
# . for voiced regions is self.noise_std
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
- noise = noise_amp * torch.randn_like(sine_waves)
+ if self.training is False and self.causal is True:
+ noise = noise_amp * self.sine_waves[:, :sine_waves.shape[1]].to(sine_waves.device)
+ else:
+ noise = noise_amp * torch.randn_like(sine_waves)
# first: set the unvoiced part to 0 by uv
# then: additive noise
@@ -339,7 +317,7 @@ class SineGen2(torch.nn.Module):
return sine_waves, uv, noise
-class SourceModuleHnNSF2(torch.nn.Module):
+class SourceModuleHnNSF(torch.nn.Module):
""" SourceModule for hn-nsf
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0)
@@ -358,19 +336,24 @@ class SourceModuleHnNSF2(torch.nn.Module):
"""
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
- add_noise_std=0.003, voiced_threshod=0):
- super(SourceModuleHnNSF2, self).__init__()
+ add_noise_std=0.003, voiced_threshod=0, sinegen_type='1', causal=False):
+ super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
# to produce sine waveforms
- self.l_sin_gen = SineGen2(sampling_rate, upsample_scale, harmonic_num,
- sine_amp, add_noise_std, voiced_threshod)
+ if sinegen_type == '1':
+ self.l_sin_gen = SineGen(sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod)
+ else:
+ self.l_sin_gen = SineGen2(sampling_rate, upsample_scale, harmonic_num, sine_amp, add_noise_std, voiced_threshod, causal=causal)
# to merge source harmonics into a single excitation
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
+ self.causal = causal
+ if causal is True:
+ self.uv = torch.rand(1, 300 * 24000, 1)
def forward(self, x):
"""
@@ -385,7 +368,10 @@ class SourceModuleHnNSF2(torch.nn.Module):
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
# source for noise branch, in the same shape as uv
- noise = torch.randn_like(uv) * self.sine_amp / 3
+ if self.training is False and self.causal is True:
+ noise = self.uv[:, :uv.shape[1]] * self.sine_amp / 3
+ else:
+ noise = torch.randn_like(uv) * self.sine_amp / 3
return sine_merge, noise, uv
@@ -425,15 +411,16 @@ class HiFTGenerator(nn.Module):
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
- # NOTE in CosyVoice2, we use the original SourceModuleHnNSF implementation
- this_SourceModuleHnNSF = SourceModuleHnNSF if self.sampling_rate == 22050 else SourceModuleHnNSF2
- self.m_source = this_SourceModuleHnNSF(
+ # NOTE in CosyVoice2, we use the original SineGen implementation
+ self.m_source = SourceModuleHnNSF(
sampling_rate=sampling_rate,
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
harmonic_num=nb_harmonics,
sine_amp=nsf_alpha,
add_noise_std=nsf_sigma,
- voiced_threshod=nsf_voiced_threshold)
+ voiced_threshod=nsf_voiced_threshold,
+ sinegen_type='1' if self.sampling_rate == 22050 else '2',
+ causal=False)
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
self.conv_pre = weight_norm(
@@ -580,3 +567,180 @@ class HiFTGenerator(nn.Module):
s[:, :, :cache_source.shape[2]] = cache_source
generated_speech = self.decode(x=speech_feat, s=s)
return generated_speech, s
+
+
+class CausalHiFTGenerator(HiFTGenerator):
+ """
+ HiFTNet Generator: Neural Source Filter + ISTFTNet
+ https://arxiv.org/abs/2309.09493
+ """
+ def __init__(
+ self,
+ in_channels: int = 80,
+ base_channels: int = 512,
+ nb_harmonics: int = 8,
+ sampling_rate: int = 22050,
+ nsf_alpha: float = 0.1,
+ nsf_sigma: float = 0.003,
+ nsf_voiced_threshold: float = 10,
+ upsample_rates: List[int] = [8, 8],
+ upsample_kernel_sizes: List[int] = [16, 16],
+ istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
+ resblock_kernel_sizes: List[int] = [3, 7, 11],
+ resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
+ source_resblock_kernel_sizes: List[int] = [7, 11],
+ source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
+ lrelu_slope: float = 0.1,
+ audio_limit: float = 0.99,
+ conv_pre_look_right: int = 4,
+ f0_predictor: torch.nn.Module = None,
+ ):
+ torch.nn.Module.__init__(self)
+
+ self.out_channels = 1
+ self.nb_harmonics = nb_harmonics
+ self.sampling_rate = sampling_rate
+ self.istft_params = istft_params
+ self.lrelu_slope = lrelu_slope
+ self.audio_limit = audio_limit
+
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=sampling_rate,
+ upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
+ harmonic_num=nb_harmonics,
+ sine_amp=nsf_alpha,
+ add_noise_std=nsf_sigma,
+ voiced_threshod=nsf_voiced_threshold,
+ sinegen_type='1' if self.sampling_rate == 22050 else '2',
+ causal=True)
+ self.upsample_rates = upsample_rates
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
+
+ self.conv_pre = weight_norm(
+ CausalConv1d(in_channels, base_channels, conv_pre_look_right + 1, 1, causal_type='right')
+ )
+
+ # Up
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ CausalConv1dUpsample(
+ base_channels // (2**i),
+ base_channels // (2**(i + 1)),
+ k,
+ u,
+ )
+ )
+ )
+
+ # Down
+ self.source_downs = nn.ModuleList()
+ self.source_resblocks = nn.ModuleList()
+ downsample_rates = [1] + upsample_rates[::-1][:-1]
+ downsample_cum_rates = np.cumprod(downsample_rates)
+ for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
+ if u == 1:
+ self.source_downs.append(
+ CausalConv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1, causal_type='left')
+ )
+ else:
+ self.source_downs.append(
+ CausalConv1dDownSample(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u)
+ )
+
+ self.source_resblocks.append(
+ ResBlock(base_channels // (2 ** (i + 1)), k, d, causal=True)
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = base_channels // (2**(i + 1))
+ for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
+ self.resblocks.append(ResBlock(ch, k, d, causal=True))
+
+ self.conv_post = weight_norm(CausalConv1d(ch, istft_params["n_fft"] + 2, 7, 1, causal_type='left'))
+ self.ups.apply(init_weights)
+ self.conv_post.apply(init_weights)
+ self.reflection_pad = nn.ReflectionPad1d((1, 0))
+ self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
+ self.conv_pre_look_right = conv_pre_look_right
+ self.f0_predictor = f0_predictor
+
+ def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0), finalize: bool = True) -> torch.Tensor:
+ s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
+ if finalize is True:
+ x = self.conv_pre(x)
+ else:
+ x = self.conv_pre(x[:, :, :-self.conv_pre_look_right], x[:, :, -self.conv_pre_look_right:])
+ s_stft_real = s_stft_real[:, :, :-int(np.prod(self.upsample_rates) * self.conv_pre_look_right)]
+ s_stft_imag = s_stft_imag[:, :, :-int(np.prod(self.upsample_rates) * self.conv_pre_look_right)]
+ s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, self.lrelu_slope)
+ x = self.ups[i](x)
+
+ if i == self.num_upsamples - 1:
+ x = self.reflection_pad(x)
+
+ # fusion
+ si = self.source_downs[i](s_stft)
+ si = self.source_resblocks[i](si)
+ x = x + si
+
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
+ phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
+
+ x = self._istft(magnitude, phase)
+ if finalize is False:
+ x = x[:, :-int(np.prod(self.upsample_rates) * self.istft_params['hop_len'])]
+ x = torch.clamp(x, -self.audio_limit, self.audio_limit)
+ return x
+
+ @torch.inference_mode()
+ def inference(self, speech_feat: torch.Tensor, finalize: bool = True) -> torch.Tensor:
+ # mel->f0 NOTE f0_predictor precision is crucial for causal inference, move self.f0_predictor to cpu if necessary
+ self.f0_predictor.to('cpu')
+ f0 = self.f0_predictor(speech_feat.cpu(), finalize=finalize).to(speech_feat)
+ # f0->source
+ s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
+ s, _, _ = self.m_source(s)
+ s = s.transpose(1, 2)
+ if finalize is True:
+ generated_speech = self.decode(x=speech_feat, s=s, finalize=finalize)
+ else:
+ generated_speech = self.decode(x=speech_feat[:, :, :-self.f0_predictor.condnet[0].causal_padding], s=s, finalize=finalize)
+ return generated_speech, s
+
+
+if __name__ == '__main__':
+ torch.backends.cudnn.deterministic = True
+ torch.backends.cudnn.benchmark = False
+ from hyperpyyaml import load_hyperpyyaml
+ with open('./pretrained_models/Fun-CosyVoice3-0.5B/cosyvoice3.yaml', 'r') as f:
+ configs = load_hyperpyyaml(f, overrides={'llm': None, 'flow': None})
+ model = configs['hift']
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ model.to(device)
+ model.eval()
+ max_len, chunk_size, context_size = 300, 30, 8
+ mel = torch.rand(1, 80, max_len).to(device)
+ pred_gt, _ = model.inference(mel)
+ for i in range(0, max_len, chunk_size):
+ finalize = True if i + chunk_size + context_size >= max_len else False
+ pred_chunk, _ = model.inference(mel[:, :, : i + chunk_size + context_size], finalize=finalize)
+ pred_chunk = pred_chunk[:, i * 480:]
+ print((pred_gt[:, i * 480:i * 480 + pred_chunk.shape[1]] - pred_chunk).abs().max().item())
diff --git a/cosyvoice/llm/llm.py b/cosyvoice/llm/llm.py
index 6891b33..eacde5b 100644
--- a/cosyvoice/llm/llm.py
+++ b/cosyvoice/llm/llm.py
@@ -17,6 +17,7 @@ import random
import time
import threading
from typing import Dict, Optional, Callable, List, Generator
+import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
@@ -56,8 +57,9 @@ class TransformerLM(torch.nn.Module):
)
# 2. build speech token language model related modules
- self.sos_eos = 0
+ self.sos = 0
self.task_id = 1
+ self.eos_token = self.speech_token_size
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
self.llm = llm
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
@@ -85,10 +87,10 @@ class TransformerLM(torch.nn.Module):
encoder_out = self.text_encoder_affine_layer(encoder_out)
return encoder_out, encoder_out_lens
- def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
+ def pad_unpad_sequence(self, sos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
- lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
+ lm_input = [torch.concat([sos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
for i in range(len(text_token))]
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
@@ -126,15 +128,15 @@ class TransformerLM(torch.nn.Module):
embedding = self.spk_embed_affine_layer(embedding)
embedding = embedding.unsqueeze(1)
- # 3. eos and task_id
- sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
+ # 3. sos and task_id
+ sos_emb = self.llm_embedding.weight[self.sos].reshape(1, 1, -1)
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
# 4. encode speech_token
speech_token = self.speech_embedding(speech_token)
# 5. unpad and pad
- lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
+ lm_input, lm_input_len = self.pad_unpad_sequence(sos_emb, embedding, text_token, text_token_len,
task_id_emb, speech_token, speech_token_len)
# 6. run lm forward
@@ -154,7 +156,7 @@ class TransformerLM(torch.nn.Module):
num_trials, max_trials = 0, 100
while True:
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
- if (not ignore_eos) or (self.speech_token_size not in top_ids):
+ if (not ignore_eos) or (top_ids < self.speech_token_size):
break
num_trials += 1
if num_trials > max_trials:
@@ -193,13 +195,13 @@ class TransformerLM(torch.nn.Module):
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)
# 3. concat llm_input
- sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
+ sos_emb = self.llm_embedding.weight[self.sos].reshape(1, 1, -1)
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
if prompt_speech_token_len != 0:
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
else:
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
- lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
+ lm_input = torch.concat([sos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
# 4. cal min/max_length
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
@@ -215,11 +217,8 @@ class TransformerLM(torch.nn.Module):
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
device=lm_input.device)).to(torch.bool))
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
- # force continue decode first token
- if i == 0:
- logp[:, self.speech_token_size] = -float('inf')
- top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
- if top_ids == self.speech_token_size:
+ top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False)
+ if top_ids == self.eos_token:
break
# in stream mode, yield token one by one
yield top_ids
@@ -276,9 +275,10 @@ class Qwen2LM(TransformerLM):
self.llm_output_size = llm_output_size
self.speech_token_size = speech_token_size
# 2. build speech token language model related modules
- self.sos_eos = 0
+ self.sos = 0
self.task_id = 1
- self.fill_token = 2
+ self.eos_token = speech_token_size
+ self.fill_token = speech_token_size + 2
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
self.llm = llm
@@ -301,7 +301,7 @@ class Qwen2LM(TransformerLM):
self.stop_token_ids = [speech_token_size + i for i in range(3)]
self.vllm_output_queue = {}
- def prepare_lm_input_target(self, text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len):
+ def prepare_lm_input_target(self, sos_emb, text_token, text_token_emb, text_token_len, task_id_emb, speech_token, speech_token_emb, speech_token_len):
lm_target, lm_input = [], []
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
@@ -312,7 +312,7 @@ class Qwen2LM(TransformerLM):
if random.random() < 0.5 and speech_token_len[i] / text_token_len[i] > self.mix_ratio[1] / self.mix_ratio[0]:
this_lm_target, this_lm_input = [], []
this_lm_target.append(IGNORE_ID)
- this_lm_input.append(self.llm_embedding.weight[self.sos_eos].reshape(1, -1))
+ this_lm_input.append(sos_emb.squeeze(dim=0))
for j in range(((text_token_len[i] + 1) / self.mix_ratio[0]).ceil().int().item()):
this_text_token = text_token[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]].tolist()
this_speech_token = speech_token[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]].tolist()
@@ -320,22 +320,21 @@ class Qwen2LM(TransformerLM):
assert len(this_speech_token) == self.mix_ratio[1]
this_lm_target += [IGNORE_ID] * (self.mix_ratio[0] - 1)
this_lm_target += this_speech_token
- this_lm_target.append(self.speech_token_size + 2)
+ this_lm_target.append(self.fill_token)
this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]])
this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]])
else:
this_lm_target += [-1] * len(this_text_token)
this_lm_target += speech_token[i][j * self.mix_ratio[1]:].tolist()
- this_lm_target.append(self.speech_token_size)
+ this_lm_target.append(self.eos_token)
this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]:])
- this_lm_input.append(self.llm_embedding.weight[self.task_id].reshape(1, -1))
+ this_lm_input.append(task_id_emb.squeeze(dim=0))
this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]:])
this_lm_target, this_lm_input = torch.tensor(this_lm_target), torch.concat(this_lm_input, dim=0)
# unistream sequence
else:
- this_lm_target = torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i].tolist() + [self.speech_token_size])
- this_lm_input = torch.concat([self.llm_embedding.weight[self.sos_eos].reshape(1, -1), text_token_emb[i],
- self.llm_embedding.weight[self.task_id].reshape(1, -1), speech_token_emb[i]], dim=0)
+ this_lm_target = torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i].tolist() + [self.eos_token])
+ this_lm_input = torch.concat([sos_emb.squeeze(dim=0), text_token_emb[i], task_id_emb.squeeze(dim=0), speech_token_emb[i]], dim=0)
lm_target.append(this_lm_target)
lm_input.append(this_lm_input)
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
@@ -363,11 +362,16 @@ class Qwen2LM(TransformerLM):
# 1. encode text_token
text_token_emb = self.llm.model.model.embed_tokens(text_token)
+ # 3. sos and task_id
+ sos_emb = self.llm_embedding.weight[self.sos].reshape(1, 1, -1)
+ task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
+
# 2. encode speech_token
speech_token_emb = self.speech_embedding(speech_token)
# 3. prepare llm_input/target
- lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len)
+ lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(sos_emb, text_token, text_token_emb, text_token_len, task_id_emb,
+ speech_token, speech_token_emb, speech_token_len)
lm_target = lm_target.to(device)
# 4. run lm forward
@@ -392,6 +396,10 @@ class Qwen2LM(TransformerLM):
# 1. encode text_token
text_token_emb = self.llm.model.model.embed_tokens(text_token)
+ # 3. sos and task_id
+ sos_emb = self.llm_embedding.weight[self.sos].reshape(1, 1, -1)
+ task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
+
# 2. encode speech_token
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
reject_speech_token = unpad_sequence(reject_speech_token, reject_speech_token_len.cpu(), batch_first=True)
@@ -401,8 +409,8 @@ class Qwen2LM(TransformerLM):
speech_token_combined_emb = self.speech_embedding(speech_token_combined)
# 3. prepare llm_input/target
- lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token.repeat(2, 1), text_token_emb.repeat(2, 1, 1), text_token_len.repeat(2),
- speech_token_combined, speech_token_combined_emb, speech_token_combined_len)
+ lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(sos_emb, text_token.repeat(2, 1), text_token_emb.repeat(2, 1, 1), text_token_len.repeat(2),
+ task_id_emb, speech_token_combined, speech_token_combined_emb, speech_token_combined_len)
lm_target = lm_target.to(device)
# 4. run lm forward
@@ -445,13 +453,13 @@ class Qwen2LM(TransformerLM):
text = self.llm.model.model.embed_tokens(text)
# 3. concat llm_input
- sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
+ sos_emb = self.llm_embedding.weight[self.sos].reshape(1, 1, -1)
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
if prompt_speech_token_len != 0:
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
else:
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
- lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
+ lm_input = torch.concat([sos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
# 4. cal min/max_length
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
@@ -500,11 +508,9 @@ class Qwen2LM(TransformerLM):
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
cache=cache)
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
- top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
- if top_ids == self.speech_token_size:
+ top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False)
+ if top_ids in self.stop_token_ids:
break
- if top_ids > self.speech_token_size:
- continue
# in stream mode, yield token one by one
yield top_ids
out_tokens.append(top_ids)
@@ -526,20 +532,20 @@ class Qwen2LM(TransformerLM):
device = prompt_text.device
# 1. prepare input
- sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
+ sos_emb = self.llm_embedding.weight[self.sos].reshape(1, 1, -1)
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
if prompt_speech_token_len != 0:
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
else:
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
- lm_input = torch.concat([sos_eos_emb], dim=1)
+ lm_input = torch.concat([sos_emb], dim=1)
# 2. iterate text
out_tokens = []
cache = None
# NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
text_cache = self.llm.model.model.embed_tokens(prompt_text)
- next_fill_index = -1
+ next_fill_index = (int(prompt_speech_token.shape[1] / self.mix_ratio[1]) + 1) * self.mix_ratio[1] - prompt_speech_token.shape[1]
for this_text in text:
text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
# prompt_speech_token_emb not empty, try append to lm_input
@@ -554,12 +560,12 @@ class Qwen2LM(TransformerLM):
break
# no prompt_speech_token_emb remain, can decode some speech token
if prompt_speech_token_emb.size(1) == 0:
- if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
+ if (len(out_tokens) != 0 and out_tokens[-1] == self.fill_token) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
logging.info('get fill token, need to append more text token')
if text_cache.size(1) >= self.mix_ratio[0]:
lm_input_text = text_cache[:, :self.mix_ratio[0]]
logging.info('append {} text token'.format(lm_input_text.size(1)))
- if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
+ if len(out_tokens) != 0 and out_tokens[-1] == self.fill_token:
lm_input = lm_input_text
else:
lm_input = torch.concat([lm_input, lm_input_text], dim=1)
@@ -574,16 +580,16 @@ class Qwen2LM(TransformerLM):
cache=cache)
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
- top_ids = self.speech_token_size + 2
+ top_ids = self.fill_token
next_fill_index += (self.mix_ratio[1] + 1)
else:
- top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item()
- if top_ids == self.speech_token_size + 2:
+ top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True)
+ if top_ids == self.fill_token:
next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
out_tokens.append(top_ids)
if top_ids >= self.speech_token_size:
- if top_ids == self.speech_token_size + 2:
+ if top_ids == self.fill_token:
break
else:
raise ValueError('should not get token {}'.format(top_ids))
@@ -599,13 +605,135 @@ class Qwen2LM(TransformerLM):
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
cache=cache)
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
- top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item()
+ top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False)
out_tokens.append(top_ids)
if top_ids >= self.speech_token_size:
- if top_ids == self.speech_token_size:
+ if top_ids == self.eos_token:
break
else:
raise ValueError('should not get token {}'.format(top_ids))
# in stream mode, yield token one by one
yield top_ids
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
+
+
+class CosyVoice3LM(Qwen2LM):
+ def __init__(
+ self,
+ llm_input_size: int,
+ llm_output_size: int,
+ speech_token_size: int,
+ llm: torch.nn.Module,
+ sampling: Callable,
+ length_normalized_loss: bool = True,
+ lsm_weight: float = 0.0,
+ mix_ratio: List[int] = [5, 15],
+ ):
+ torch.nn.Module.__init__(self)
+ self.llm_input_size = llm_input_size
+ self.llm_output_size = llm_output_size
+ self.speech_token_size = speech_token_size
+ # 2. build speech token language model related modules
+ self.sos = speech_token_size + 0
+ self.eos_token = speech_token_size + 1
+ self.task_id = speech_token_size + 2
+ self.fill_token = speech_token_size + 3
+
+ self.llm = llm
+ self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 200, bias=False)
+ self.criterion_ce = LabelSmoothingLoss(
+ size=speech_token_size + 200,
+ padding_idx=IGNORE_ID,
+ smoothing=lsm_weight,
+ normalize_length=length_normalized_loss,
+ )
+
+ # 3. [Optional] build speech token related modules
+ self.speech_embedding = torch.nn.Embedding(speech_token_size + 200, llm_input_size)
+
+ # 4. sampling method
+ self.sampling = sampling
+ self.mix_ratio = mix_ratio
+
+ # 5. vllm related
+ self.stop_token_ids = [speech_token_size + i for i in range(200)]
+ self.vllm_output_queue = {}
+
+ def forward(
+ self,
+ batch: dict,
+ device: torch.device,
+ ) -> Dict[str, Optional[torch.Tensor]]:
+ """
+ Args:
+ text: (B, L, D)
+ text_lengths: (B,)
+ audio: (B, T, N) or (B, T)
+ audio_lengths: (B,)
+ """
+ text_token = batch['text_token'].to(device)
+ text_token_len = batch['text_token_len'].to(device)
+ speech_token = batch['speech_token'].to(device)
+ speech_token_len = batch['speech_token_len'].to(device)
+ # NOTE should append instruct_token to sequence, not implemented yet
+ instruct_token = batch['instruct_token'].to(device)
+ instruct_token_len = batch['instruct_token_len'].to(device)
+
+ # 1. encode text_token
+ text_token_emb = self.llm.model.model.embed_tokens(text_token)
+
+ # 3. sos and task_id
+ sos_emb = self.speech_embedding.weight[self.sos].reshape(1, 1, -1)
+ task_id_emb = self.speech_embedding.weight[self.task_id].reshape(1, 1, -1)
+
+ # 2. encode speech_token
+ speech_token_emb = self.speech_embedding(speech_token)
+
+ # 3. prepare llm_input/target
+ lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(sos_emb, text_token, text_token_emb, text_token_len, task_id_emb,
+ speech_token, speech_token_emb, speech_token_len)
+ lm_target = lm_target.to(device)
+
+ # 4. run lm forward
+ lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
+ logits = self.llm_decoder(lm_output)
+ loss = self.criterion_ce(logits, lm_target.to(device))
+ acc = th_accuracy(logits.view(-1, self.speech_token_size + 3), lm_target, ignore_label=IGNORE_ID)
+ return {'loss': loss, 'acc': acc}
+
+ @torch.inference_mode()
+ def inference(
+ self,
+ text: torch.Tensor,
+ text_len: torch.Tensor,
+ prompt_text: torch.Tensor,
+ prompt_text_len: torch.Tensor,
+ prompt_speech_token: torch.Tensor,
+ prompt_speech_token_len: torch.Tensor,
+ embedding: torch.Tensor,
+ sampling: int = 25,
+ max_token_text_ratio: float = 20,
+ min_token_text_ratio: float = 2,
+ uuid: str = '',
+ ) -> Generator[torch.Tensor, None, None]:
+ device = text.device
+ text = torch.concat([prompt_text, text], dim=1)
+ text_len += prompt_text_len
+ text = self.llm.model.model.embed_tokens(text)
+
+ # 3. concat llm_input
+ sos_emb = self.speech_embedding.weight[self.sos].reshape(1, 1, -1)
+ task_id_emb = self.speech_embedding.weight[self.task_id].reshape(1, 1, -1)
+ if prompt_speech_token_len != 0:
+ prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
+ else:
+ prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
+ lm_input = torch.concat([sos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
+
+ # 4. cal min/max_length
+ min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
+ max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
+
+ # 5. step by step decode
+ for token in self.inference_wrapper(lm_input, sampling, min_len, max_len, uuid):
+ yield token
diff --git a/cosyvoice/tokenizer/tokenizer.py b/cosyvoice/tokenizer/tokenizer.py
index 43fb39a..6ecf4ae 100644
--- a/cosyvoice/tokenizer/tokenizer.py
+++ b/cosyvoice/tokenizer/tokenizer.py
@@ -238,7 +238,7 @@ def get_tokenizer(
)
-class QwenTokenizer():
+class CosyVoice2Tokenizer():
def __init__(self, token_path, skip_special_tokens=True):
super().__init__()
# NOTE: non-chat model, all these special tokens keep randomly initialized.
@@ -271,9 +271,57 @@ class QwenTokenizer():
return text
+class CosyVoice3Tokenizer(CosyVoice2Tokenizer):
+ def __init__(self, token_path, skip_special_tokens=True):
+ # NOTE: non-chat model, all these special tokens keep randomly initialized.
+ special_tokens = {
+ 'eos_token': '<|endoftext|>',
+ 'pad_token': '<|endoftext|>',
+ 'additional_special_tokens': [
+ '<|im_start|>', '<|im_end|>', '<|endofprompt|>',
+ '[breath]', '', '', '[noise]',
+ '[laughter]', '[cough]', '[clucking]', '[accent]',
+ '[quick_breath]',
+ "", "",
+ "[hissing]", "[sigh]", "[vocalized-noise]",
+ "[lipsmack]", "[mn]", "<|endofsystem|>",
+ "[AA]", "[AA0]", "[AA1]", "[AA2]", "[AE]", "[AE0]", "[AE1]", "[AE2]", "[AH]", "[AH0]", "[AH1]", "[AH2]",
+ "[AO]", "[AO0]", "[AO1]", "[AO2]", "[AW]", "[AW0]", "[AW1]", "[AW2]", "[AY]", "[AY0]", "[AY1]", "[AY2]",
+ "[B]", "[CH]", "[D]", "[DH]", "[EH]", "[EH0]", "[EH1]", "[EH2]", "[ER]", "[ER0]", "[ER1]", "[ER2]", "[EY]",
+ "[EY0]", "[EY1]", "[EY2]", "[F]", "[G]", "[HH]", "[IH]", "[IH0]", "[IH1]", "[IH2]", "[IY]", "[IY0]", "[IY1]",
+ "[IY2]", "[JH]", "[K]", "[L]", "[M]", "[N]", "[NG]", "[OW]", "[OW0]", "[OW1]", "[OW2]", "[OY]", "[OY0]",
+ "[OY1]", "[OY2]", "[P]", "[R]", "[S]", "[SH]", "[T]", "[TH]", "[UH]", "[UH0]", "[UH1]", "[UH2]", "[UW]",
+ "[UW0]", "[UW1]", "[UW2]", "[V]", "[W]", "[Y]", "[Z]", "[ZH]",
+ "[a]", "[ai]", "[an]", "[ang]", "[ao]", "[b]", "[c]", "[ch]", "[d]", "[e]", "[ei]", "[en]", "[eng]", "[f]",
+ "[g]", "[h]", "[i]", "[ian]", "[in]", "[ing]", "[iu]", "[ià]", "[iàn]", "[iàng]", "[iào]", "[iá]", "[ián]",
+ "[iáng]", "[iáo]", "[iè]", "[ié]", "[iòng]", "[ióng]", "[iù]", "[iú]", "[iā]", "[iān]", "[iāng]", "[iāo]",
+ "[iē]", "[iě]", "[iōng]", "[iū]", "[iǎ]", "[iǎn]", "[iǎng]", "[iǎo]", "[iǒng]", "[iǔ]", "[j]", "[k]", "[l]",
+ "[m]", "[n]", "[o]", "[ong]", "[ou]", "[p]", "[q]", "[r]", "[s]", "[sh]", "[t]", "[u]", "[uang]", "[ue]",
+ "[un]", "[uo]", "[uà]", "[uài]", "[uàn]", "[uàng]", "[uá]", "[uái]", "[uán]", "[uáng]", "[uè]", "[ué]", "[uì]",
+ "[uí]", "[uò]", "[uó]", "[uā]", "[uāi]", "[uān]", "[uāng]", "[uē]", "[uě]", "[uī]", "[uō]", "[uǎ]", "[uǎi]",
+ "[uǎn]", "[uǎng]", "[uǐ]", "[uǒ]", "[vè]", "[w]", "[x]", "[y]", "[z]", "[zh]", "[à]", "[ài]", "[àn]", "[àng]",
+ "[ào]", "[á]", "[ái]", "[án]", "[áng]", "[áo]", "[è]", "[èi]", "[èn]", "[èng]", "[èr]", "[é]", "[éi]", "[én]",
+ "[éng]", "[ér]", "[ì]", "[ìn]", "[ìng]", "[í]", "[ín]", "[íng]", "[ò]", "[òng]", "[òu]", "[ó]", "[óng]", "[óu]",
+ "[ù]", "[ùn]", "[ú]", "[ún]", "[ā]", "[āi]", "[ān]", "[āng]", "[āo]", "[ē]", "[ēi]", "[ēn]", "[ēng]", "[ě]",
+ "[ěi]", "[ěn]", "[ěng]", "[ěr]", "[ī]", "[īn]", "[īng]", "[ō]", "[ōng]", "[ōu]", "[ū]", "[ūn]", "[ǎ]", "[ǎi]",
+ "[ǎn]", "[ǎng]", "[ǎo]", "[ǐ]", "[ǐn]", "[ǐng]", "[ǒ]", "[ǒng]", "[ǒu]", "[ǔ]", "[ǔn]", "[ǘ]", "[ǚ]", "[ǜ]"
+ ]
+ }
+ self.special_tokens = special_tokens
+ self.tokenizer = AutoTokenizer.from_pretrained(token_path)
+ self.tokenizer.add_special_tokens(special_tokens)
+ self.skip_special_tokens = skip_special_tokens
+
+
@lru_cache(maxsize=None)
def get_qwen_tokenizer(
token_path: str,
- skip_special_tokens: bool
-) -> QwenTokenizer:
- return QwenTokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)
+ skip_special_tokens: bool,
+ version: str = 'cosyvoice2'
+):
+ if version == 'cosyvoice2':
+ return CosyVoice2Tokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)
+ elif version == 'cosyvoice3':
+ return CosyVoice3Tokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)
+ else:
+ raise ValueError
diff --git a/cosyvoice/transformer/convolution.py b/cosyvoice/transformer/convolution.py
index 4d5d961..edb32b2 100644
--- a/cosyvoice/transformer/convolution.py
+++ b/cosyvoice/transformer/convolution.py
@@ -19,6 +19,7 @@ from typing import Tuple
import torch
from torch import nn
+import torch.nn.functional as F
class ConvolutionModule(nn.Module):
@@ -143,3 +144,115 @@ class ConvolutionModule(nn.Module):
x.masked_fill_(~mask_pad, 0.0)
return x.transpose(1, 2), new_cache
+
+
+# NOTE(Xiang Lyu) causal conv module used in convolution-based vocoder
+class CausalConv1d(torch.nn.Conv1d):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ kernel_size: int,
+ stride: int = 1,
+ dilation: int = 1,
+ groups: int = 1,
+ bias: bool = True,
+ padding_mode: str = 'zeros',
+ causal_type: str = 'left',
+ device=None,
+ dtype=None
+ ) -> None:
+ super(CausalConv1d, self).__init__(in_channels, out_channels,
+ kernel_size, stride=1,
+ padding=0, dilation=dilation,
+ groups=groups, bias=bias,
+ padding_mode=padding_mode,
+ device=device, dtype=dtype)
+ assert stride == 1
+ self.causal_padding = int((kernel_size * dilation - dilation) / 2) * 2 + (kernel_size + 1) % 2
+ assert causal_type in ['left', 'right']
+ self.causal_type = causal_type
+
+ def forward(self, x: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor]:
+ input_timestep = x.shape[2]
+ if cache.size(2) == 0:
+ cache = torch.zeros(x.shape[0], x.shape[1], self.causal_padding).to(x)
+ assert cache.size(2) == self.causal_padding
+ if self.causal_type == 'left':
+ x = torch.concat([cache, x], dim=2)
+ else:
+ x = torch.concat([x, cache], dim=2)
+ x = super(CausalConv1d, self).forward(x)
+ assert x.shape[2] == input_timestep
+ return x
+
+
+class CausalConv1dDownSample(torch.nn.Conv1d):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ kernel_size: int,
+ stride: int = 1,
+ dilation: int = 1,
+ groups: int = 1,
+ bias: bool = True,
+ padding_mode: str = 'zeros',
+ device=None,
+ dtype=None
+ ) -> None:
+ super(CausalConv1dDownSample, self).__init__(in_channels, out_channels,
+ kernel_size, stride,
+ padding=0, dilation=dilation,
+ groups=groups, bias=bias,
+ padding_mode=padding_mode,
+ device=device, dtype=dtype)
+ assert stride != 1 and dilation == 1
+ assert kernel_size % stride == 0
+ self.causal_padding = stride - 1
+
+ def forward(self, x: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
+ if cache.size(2) == 0:
+ x = F.pad(x, (self.causal_padding, 0), value=0.0)
+ else:
+ assert cache.size(2) == self.causal_padding
+ x = torch.concat([cache, x], dim=2)
+ x = super(CausalConv1dDownSample, self).forward(x)
+ return x
+
+
+class CausalConv1dUpsample(torch.nn.Conv1d):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ kernel_size: int,
+ stride: int = 1,
+ dilation: int = 1,
+ groups: int = 1,
+ bias: bool = True,
+ padding_mode: str = 'zeros',
+ device=None,
+ dtype=None
+ ) -> None:
+ super(CausalConv1dUpsample, self).__init__(in_channels, out_channels,
+ kernel_size, 1,
+ padding=0, dilation=dilation,
+ groups=groups, bias=bias,
+ padding_mode=padding_mode,
+ device=device, dtype=dtype)
+ assert dilation == 1
+ self.causal_padding = kernel_size - 1
+ self.upsample = torch.nn.Upsample(scale_factor=stride, mode='nearest')
+
+ def forward(self, x: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
+ x = self.upsample(x)
+ input_timestep = x.shape[2]
+ if cache.size(2) == 0:
+ x = F.pad(x, (self.causal_padding, 0), value=0.0)
+ else:
+ assert cache.size(2) == self.causal_padding
+ x = torch.concat([cache, x], dim=2)
+ x = super(CausalConv1dUpsample, self).forward(x)
+ assert input_timestep == x.shape[2]
+ return x
diff --git a/cosyvoice/transformer/upsample_encoder.py b/cosyvoice/transformer/upsample_encoder.py
index 6ffda6a..baf7481 100644
--- a/cosyvoice/transformer/upsample_encoder.py
+++ b/cosyvoice/transformer/upsample_encoder.py
@@ -64,17 +64,18 @@ class Upsample1D(nn.Module):
class PreLookaheadLayer(nn.Module):
- def __init__(self, channels: int, pre_lookahead_len: int = 1):
+ def __init__(self, in_channels: int, channels: int, pre_lookahead_len: int = 1):
super().__init__()
+ self.in_channels = in_channels
self.channels = channels
self.pre_lookahead_len = pre_lookahead_len
self.conv1 = nn.Conv1d(
- channels, channels,
+ in_channels, channels,
kernel_size=pre_lookahead_len + 1,
stride=1, padding=0,
)
self.conv2 = nn.Conv1d(
- channels, channels,
+ channels, in_channels,
kernel_size=3, stride=1, padding=0,
)
@@ -199,7 +200,7 @@ class UpsampleConformerEncoder(torch.nn.Module):
# convolution module definition
convolution_layer_args = (output_size, cnn_module_kernel, activation,
cnn_module_norm, causal)
- self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3)
+ self.pre_lookahead_layer = PreLookaheadLayer(in_channels=512, channels=512, pre_lookahead_len=3)
self.encoders = torch.nn.ModuleList([
ConformerEncoderLayer(
output_size,
diff --git a/cosyvoice/utils/class_utils.py b/cosyvoice/utils/class_utils.py
index c49de00..aab8326 100644
--- a/cosyvoice/utils/class_utils.py
+++ b/cosyvoice/utils/class_utils.py
@@ -32,10 +32,10 @@ from cosyvoice.transformer.attention import (MultiHeadedAttention,
RelPositionMultiHeadedAttention)
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
-from cosyvoice.llm.llm import TransformerLM, Qwen2LM
-from cosyvoice.flow.flow import MaskedDiffWithXvec, CausalMaskedDiffWithXvec
-from cosyvoice.hifigan.generator import HiFTGenerator
-from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
+from cosyvoice.llm.llm import TransformerLM, Qwen2LM, CosyVoice3LM
+from cosyvoice.flow.flow import MaskedDiffWithXvec, CausalMaskedDiffWithXvec, CausalMaskedDiffWithDiT
+from cosyvoice.hifigan.generator import HiFTGenerator, CausalHiFTGenerator
+from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model, CosyVoice3Model
COSYVOICE_ACTIVATION_CLASSES = {
@@ -80,4 +80,6 @@ def get_model_type(configs):
return CosyVoiceModel
if isinstance(configs['llm'], Qwen2LM) and isinstance(configs['flow'], CausalMaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
return CosyVoice2Model
+ if isinstance(configs['llm'], CosyVoice3LM) and isinstance(configs['flow'], CausalMaskedDiffWithDiT) and isinstance(configs['hift'], CausalHiFTGenerator):
+ return CosyVoice3Model
raise TypeError('No valid model type found!')
diff --git a/cosyvoice/utils/common.py b/cosyvoice/utils/common.py
index 6f5a3dd..5d307ae 100644
--- a/cosyvoice/utils/common.py
+++ b/cosyvoice/utils/common.py
@@ -25,6 +25,33 @@ import torch
IGNORE_ID = -1
+instruct_list = ["You are a helpful assistant. 请用广东话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用东北话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用甘肃话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用贵州话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用河南话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用湖北话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用湖南话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用江西话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用闽南话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用宁夏话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用山西话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用陕西话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用山东话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用上海话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用四川话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用天津话表达。<|endofprompt|>",
+ "You are a helpful assistant. 请用云南话表达。<|endofprompt|>",
+ "You are a helpful assistant. Please say a sentence as loudly as possible.<|endofprompt|>",
+ "You are a helpful assistant. Please say a sentence in a very soft voice.<|endofprompt|>",
+ "You are a helpful assistant. 请用尽可能慢地语速说一句话。<|endofprompt|>",
+ "You are a helpful assistant. 请用尽可能快地语速说一句话。<|endofprompt|>",
+ "You are a helpful assistant. 请非常开心地说一句话。<|endofprompt|>",
+ "You are a helpful assistant. 请非常伤心地说一句话。<|endofprompt|>",
+ "You are a helpful assistant. 请非常生气地说一句话。<|endofprompt|>",
+ "You are a helpful assistant. 我想体验一下小猪佩奇风格,可以吗?<|endofprompt|>",
+ "You are a helpful assistant. 你可以尝试用机器人的方式解答吗?<|endofprompt|>"]
+
def pad_list(xs: List[torch.Tensor], pad_value: int):
"""Perform padding for the list of tensors.
@@ -130,12 +157,12 @@ def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25):
break
prob = torch.tensor(prob).to(weighted_scores)
indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
- top_ids = indices[prob.multinomial(1, replacement=True)]
+ top_ids = indices[prob.multinomial(1, replacement=True)].item()
return top_ids
def random_sampling(weighted_scores, decoded_tokens, sampling):
- top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True)
+ top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True).item()
return top_ids
diff --git a/cosyvoice/utils/file_utils.py b/cosyvoice/utils/file_utils.py
index a92f8e7..b173ef2 100644
--- a/cosyvoice/utils/file_utils.py
+++ b/cosyvoice/utils/file_utils.py
@@ -41,11 +41,11 @@ def read_json_lists(list_file):
return results
-def load_wav(wav, target_sr):
+def load_wav(wav, target_sr, min_sr=16000):
speech, sample_rate = torchaudio.load(wav, backend='soundfile')
speech = speech.mean(dim=0, keepdim=True)
if sample_rate != target_sr:
- assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
+ assert sample_rate >= min_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
return speech
@@ -88,30 +88,18 @@ def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, fp16):
logging.info("Succesfully convert onnx to trt...")
+# NOTE do not support bistream inference as only speech token embedding/head is kept
def export_cosyvoice2_vllm(model, model_path, device):
if os.path.exists(model_path):
return
- pad_to = DEFAULT_VOCAB_PADDING_SIZE = 64
- vocab_size = model.speech_embedding.num_embeddings
- feature_size = model.speech_embedding.embedding_dim
- pad_vocab_size = ((vocab_size + pad_to - 1) // pad_to) * pad_to
dtype = torch.bfloat16
# lm_head
- new_lm_head = torch.nn.Linear(in_features=feature_size, out_features=pad_vocab_size, bias=True)
- with torch.no_grad():
- new_lm_head.weight[:vocab_size] = model.llm_decoder.weight
- new_lm_head.bias[:vocab_size] = model.llm_decoder.bias
- new_lm_head.weight[vocab_size:] = 0
- new_lm_head.bias[vocab_size:] = 0
- model.llm.model.lm_head = new_lm_head
- new_codec_embed = torch.nn.Linear(in_features=feature_size, out_features=pad_vocab_size)
+ use_bias = True if model.llm_decoder.bias is not None else False
+ model.llm.model.lm_head = model.llm_decoder
# embed_tokens
embed_tokens = model.llm.model.model.embed_tokens
- with torch.no_grad():
- new_codec_embed.weight[:vocab_size] = model.speech_embedding.weight
- new_codec_embed.weight[vocab_size:] = 0
- model.llm.model.set_input_embeddings(new_codec_embed)
+ model.llm.model.set_input_embeddings(model.speech_embedding)
model.llm.model.to(device)
model.llm.model.to(dtype)
tmp_vocab_size = model.llm.model.config.vocab_size
@@ -119,11 +107,12 @@ def export_cosyvoice2_vllm(model, model_path, device):
del model.llm.model.generation_config.eos_token_id
del model.llm.model.config.bos_token_id
del model.llm.model.config.eos_token_id
- model.llm.model.config.vocab_size = pad_vocab_size
+ model.llm.model.config.vocab_size = model.speech_embedding.num_embeddings
model.llm.model.config.tie_word_embeddings = False
- model.llm.model.config.use_bias = True
+ model.llm.model.config.use_bias = use_bias
model.llm.model.save_pretrained(model_path)
- os.system('sed -i s@Qwen2ForCausalLM@CosyVoice2ForCausalLM@g {}/config.json'.format(os.path.abspath(model_path)))
+ if use_bias is True:
+ os.system('sed -i s@Qwen2ForCausalLM@CosyVoice2ForCausalLM@g {}/config.json'.format(os.path.abspath(model_path)))
model.llm.model.config.vocab_size = tmp_vocab_size
model.llm.model.config.tie_word_embeddings = tmp_tie_embedding
model.llm.model.set_input_embeddings(embed_tokens)
diff --git a/example.py b/example.py
new file mode 100644
index 0000000..85952ae
--- /dev/null
+++ b/example.py
@@ -0,0 +1,106 @@
+import sys
+sys.path.append('third_party/Matcha-TTS')
+from cosyvoice.cli.cosyvoice import AutoModel
+import torchaudio
+
+
+def cosyvoice_example():
+ """ CosyVoice Usage, check https://fun-audio-llm.github.io/ for more details
+ """
+ cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice-300M-SFT')
+ # sft usage
+ print(cosyvoice.list_available_spks())
+ # change stream=True for chunk stream inference
+ for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
+ torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+ cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice-300M')
+ # zero_shot usage
+ for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav')):
+ torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+ # cross_lingual usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
+ for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.',
+ './asset/cross_lingual_prompt.wav')):
+ torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+ # vc usage
+ for i, j in enumerate(cosyvoice.inference_vc('./asset/cross_lingual_prompt.wav', './asset/zero_shot_prompt.wav')):
+ torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+ cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice-300M-Instruct')
+ # instruct usage, support [laughter][breath]
+ for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的勇气与智慧。', '中文男',
+ 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.<|endofprompt|>')):
+ torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+
+def cosyvoice2_example():
+ """ CosyVoice2 Usage, check https://funaudiollm.github.io/cosyvoice2/ for more details
+ """
+ cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice2-0.5B')
+
+ # NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
+ # zero_shot usage
+ for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav')):
+ torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+ # save zero_shot spk for future usage
+ assert cosyvoice.add_zero_shot_spk('希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav', 'my_zero_shot_spk') is True
+ for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '', '', zero_shot_spk_id='my_zero_shot_spk')):
+ torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+ cosyvoice.save_spkinfo()
+
+ # fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
+ for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', './asset/zero_shot_prompt.wav')):
+ torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+ # instruct usage
+ for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话<|endofprompt|>', './asset/zero_shot_prompt.wav')):
+ torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+ # bistream usage, you can use generator as input, this is useful when using text llm model as input
+ # NOTE you should still have some basic sentence split logic because llm can not handle arbitrary sentence length
+ def text_generator():
+ yield '收到好友从远方寄来的生日礼物,'
+ yield '那份意外的惊喜与深深的祝福'
+ yield '让我心中充满了甜蜜的快乐,'
+ yield '笑容如花儿般绽放。'
+ for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav', stream=False)):
+ torchaudio.save('zero_shot_bistream_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+
+def cosyvoice3_example():
+ """ CosyVoice3 Usage, check https://funaudiollm.github.io/cosyvoice3/ for more details
+ """
+ cosyvoice = AutoModel(model_dir='pretrained_models/Fun-CosyVoice3-0.5B')
+ # zero_shot usage
+ for i, j in enumerate(cosyvoice.inference_zero_shot('八百标兵奔北坡,北坡炮兵并排跑,炮兵怕把标兵碰,标兵怕碰炮兵炮。', 'You are a helpful assistant.<|endofprompt|>希望你以后能够做的比我还好呦。',
+ './asset/zero_shot_prompt.wav', stream=False)):
+ torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+ # fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L280
+ for i, j in enumerate(cosyvoice.inference_cross_lingual('You are a helpful assistant.<|endofprompt|>[breath]因为他们那一辈人[breath]在乡里面住的要习惯一点,[breath]邻居都很活络,[breath]嗯,都很熟悉。[breath]',
+ './asset/zero_shot_prompt.wav', stream=False)):
+ torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+ # instruct usage, for supported control, check cosyvoice/utils/common.py#L28
+ for i, j in enumerate(cosyvoice.inference_instruct2('好少咯,一般系放嗰啲国庆啊,中秋嗰啲可能会咯。', 'You are a helpful assistant. 请用广东话表达。<|endofprompt|>',
+ './asset/zero_shot_prompt.wav', stream=False)):
+ torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+ for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', 'You are a helpful assistant. 请用尽可能快地语速说一句话。<|endofprompt|>',
+ './asset/zero_shot_prompt.wav', stream=False)):
+ torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+ # hotfix usage
+ for i, j in enumerate(cosyvoice.inference_zero_shot('高管也通过电话、短信、微信等方式对报道[j][ǐ]予好评。', 'You are a helpful assistant.<|endofprompt|>希望你以后能够做的比我还好呦。',
+ './asset/zero_shot_prompt.wav', stream=False)):
+ torchaudio.save('hotfix_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
+
+
+def main():
+ # cosyvoice_example()
+ # cosyvoice2_example()
+ cosyvoice3_example()
+
+
+if __name__ == '__main__':
+ main()
diff --git a/examples/libritts/cosyvoice/local/prepare_data.py b/examples/libritts/cosyvoice/local/prepare_data.py
index 918aef3..fffa9fb 100644
--- a/examples/libritts/cosyvoice/local/prepare_data.py
+++ b/examples/libritts/cosyvoice/local/prepare_data.py
@@ -40,6 +40,11 @@ def main():
with open('{}/spk2utt'.format(args.des_dir), 'w') as f:
for k, v in spk2utt.items():
f.write('{} {}\n'.format(k, ' '.join(v)))
+ if args.instruct is True:
+ with open('{}/instruct'.format(args.des_dir), 'w') as f:
+ for k, v in utt2text.items():
+ # NOTE in CosyVoice3, we add instruct in sequence
+ f.write('{} You are a helpful assistant.<|endofprompt|>\n'.format(k, v))
return
@@ -49,7 +54,9 @@ if __name__ == "__main__":
type=str)
parser.add_argument('--des_dir',
type=str)
- parser.add_argument('--ref_model',
- type=str)
+ parser.add_argument('--instruct',
+ action='store_true',
+ default=False,
+ help='create instruct file or not')
args = parser.parse_args()
main()
diff --git a/examples/libritts/cosyvoice3/conf/cosyvoice3.yaml b/examples/libritts/cosyvoice3/conf/cosyvoice3.yaml
new file mode 100644
index 0000000..df36109
--- /dev/null
+++ b/examples/libritts/cosyvoice3/conf/cosyvoice3.yaml
@@ -0,0 +1,234 @@
+# set random seed, so that you may reproduce your result.
+__set_seed1: !apply:random.seed [1986]
+__set_seed2: !apply:numpy.random.seed [1986]
+__set_seed3: !apply:torch.manual_seed [1986]
+__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
+
+# fixed params
+sample_rate: 24000
+llm_input_size: 896
+llm_output_size: 896
+spk_embed_dim: 192
+qwen_pretrain_path: ''
+token_frame_rate: 25
+token_mel_ratio: 2
+
+# stream related params
+chunk_size: 25 # streaming inference chunk size, in token
+num_decoding_left_chunks: -1 # streaming inference flow decoder left chunk size, <0 means use all left chunks
+
+# model params
+# for all class/function included in this repo, we use ! or ! for intialization, so that user may find all corresponding class/function according to one single yaml.
+# for system/third_party class/function, we do not require this.
+llm: !new:cosyvoice.llm.llm.Qwen2LM
+ llm_input_size: !ref
+ llm_output_size: !ref
+ speech_token_size: 6561
+ length_normalized_loss: True
+ lsm_weight: 0
+ mix_ratio: [5, 15]
+ llm: !new:cosyvoice.llm.llm.Qwen2Encoder
+ pretrain_path: !ref
+ sampling: !name:cosyvoice.utils.common.ras_sampling
+ top_p: 0.8
+ top_k: 25
+ win_size: 10
+ tau_r: 0.1
+
+flow: !new:cosyvoice.flow.flow.CausalMaskedDiffWithXvec
+ input_size: 512
+ output_size: 80
+ spk_embed_dim: !ref
+ output_type: 'mel'
+ vocab_size: 6561
+ input_frame_rate: !ref
+ only_mask_loss: True
+ token_mel_ratio: !ref
+ pre_lookahead_len: 3
+ encoder: !new:cosyvoice.transformer.upsample_encoder.UpsampleConformerEncoder
+ output_size: 512
+ attention_heads: 8
+ linear_units: 2048
+ num_blocks: 6
+ dropout_rate: 0.1
+ positional_dropout_rate: 0.1
+ attention_dropout_rate: 0.1
+ normalize_before: True
+ input_layer: 'linear'
+ pos_enc_layer_type: 'rel_pos_espnet'
+ selfattention_layer_type: 'rel_selfattn'
+ input_size: 512
+ use_cnn_module: False
+ macaron_style: False
+ static_chunk_size: !ref
+ decoder: !new:cosyvoice.flow.flow_matching.CausalConditionalCFM
+ in_channels: 240
+ n_spks: 1
+ spk_emb_dim: 80
+ cfm_params: !new:omegaconf.DictConfig
+ content:
+ sigma_min: 1e-06
+ solver: 'euler'
+ t_scheduler: 'cosine'
+ training_cfg_rate: 0.2
+ inference_cfg_rate: 0.7
+ reg_loss_type: 'l1'
+ estimator: !new:cosyvoice.flow.decoder.CausalConditionalDecoder
+ in_channels: 320
+ out_channels: 80
+ channels: [256]
+ dropout: 0.0
+ attention_head_dim: 64
+ n_blocks: 4
+ num_mid_blocks: 12
+ num_heads: 8
+ act_fn: 'gelu'
+ static_chunk_size: !ref *
+ num_decoding_left_chunks: !ref
+
+hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
+ in_channels: 80
+ base_channels: 512
+ nb_harmonics: 8
+ sampling_rate: !ref
+ nsf_alpha: 0.1
+ nsf_sigma: 0.003
+ nsf_voiced_threshold: 10
+ upsample_rates: [8, 5, 3]
+ upsample_kernel_sizes: [16, 11, 7]
+ istft_params:
+ n_fft: 16
+ hop_len: 4
+ resblock_kernel_sizes: [3, 7, 11]
+ resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
+ source_resblock_kernel_sizes: [7, 7, 11]
+ source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
+ lrelu_slope: 0.1
+ audio_limit: 0.99
+ f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
+ num_class: 1
+ in_channels: 80
+ cond_channels: 512
+
+# gan related module
+mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
+ n_fft: 1920
+ num_mels: 80
+ sampling_rate: !ref
+ hop_size: 480
+ win_size: 1920
+ fmin: 0
+ fmax: null
+ center: False
+hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
+ generator: !ref
+ discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
+ mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
+ mrd: !new:cosyvoice.hifigan.discriminator.MultiResSpecDiscriminator
+ mel_spec_transform: [
+ !ref
+ ]
+
+# processor functions
+parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
+get_tokenizer: !name:cosyvoice.tokenizer.tokenizer.get_qwen_tokenizer
+ token_path: !ref
+ skip_special_tokens: True
+allowed_special: 'all'
+tokenize: !name:cosyvoice.dataset.processor.tokenize
+ get_tokenizer: !ref
+ allowed_special: !ref
+filter: !name:cosyvoice.dataset.processor.filter
+ max_length: 40960
+ min_length: 100
+ token_max_length: 200
+ token_min_length: 1
+resample: !name:cosyvoice.dataset.processor.resample
+ resample_rate: !ref
+truncate: !name:cosyvoice.dataset.processor.truncate
+ truncate_length: 24480 # must be a multiplier of hop_size
+feat_extractor: !name:matcha.utils.audio.mel_spectrogram
+ n_fft: 1920
+ num_mels: 80
+ sampling_rate: !ref
+ hop_size: 480
+ win_size: 1920
+ fmin: 0
+ fmax: 8000
+ center: False
+compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
+ feat_extractor: !ref
+ token_mel_ratio: 2
+compute_f0: !name:cosyvoice.dataset.processor.compute_f0
+ sample_rate: !ref
+ hop_size: 480
+parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
+ normalize: True
+shuffle: !name:cosyvoice.dataset.processor.shuffle
+ shuffle_size: 1000
+sort: !name:cosyvoice.dataset.processor.sort
+ sort_size: 500 # sort_size should be less than shuffle_size
+batch: !name:cosyvoice.dataset.processor.batch
+ batch_type: 'dynamic'
+ max_frames_in_batch: 2000
+padding: !name:cosyvoice.dataset.processor.padding
+ use_spk_embedding: False # change to True during sft
+
+
+# dataset processor pipeline
+data_pipeline: [
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+]
+data_pipeline_gan: [
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+ !ref ,
+]
+
+# llm flow train conf
+train_conf:
+ optim: adam
+ optim_conf:
+ lr: 1e-5 # change to 1e-5 during sft
+ scheduler: constantlr # change to constantlr during sft
+ scheduler_conf:
+ warmup_steps: 2500
+ max_epoch: 200
+ grad_clip: 5
+ accum_grad: 2
+ log_interval: 100
+ save_per_step: -1
+
+# gan train conf
+train_conf_gan:
+ optim: adam
+ optim_conf:
+ lr: 0.0002 # use small lr for gan training
+ scheduler: constantlr
+ optim_d: adam
+ optim_conf_d:
+ lr: 0.0002 # use small lr for gan training
+ scheduler_d: constantlr
+ max_epoch: 200
+ grad_clip: 5
+ accum_grad: 1 # in gan training, accum_grad must be 1
+ log_interval: 100
+ save_per_step: -1
\ No newline at end of file
diff --git a/examples/libritts/cosyvoice3/conf/ds_stage2.json b/examples/libritts/cosyvoice3/conf/ds_stage2.json
new file mode 100644
index 0000000..2b2de3d
--- /dev/null
+++ b/examples/libritts/cosyvoice3/conf/ds_stage2.json
@@ -0,0 +1,42 @@
+{
+ "train_micro_batch_size_per_gpu": 1,
+ "gradient_accumulation_steps": 1,
+ "steps_per_print": 100,
+ "gradient_clipping": 5,
+ "fp16": {
+ "enabled": false,
+ "auto_cast": false,
+ "loss_scale": 0,
+ "initial_scale_power": 16,
+ "loss_scale_window": 256,
+ "hysteresis": 2,
+ "consecutive_hysteresis": false,
+ "min_loss_scale": 1
+ },
+ "bf16": {
+ "enabled": false
+ },
+ "zero_force_ds_cpu_optimizer": false,
+ "zero_optimization": {
+ "stage": 2,
+ "offload_optimizer": {
+ "device": "none",
+ "pin_memory": true
+ },
+ "allgather_partitions": true,
+ "allgather_bucket_size": 5e8,
+ "overlap_comm": false,
+ "reduce_scatter": true,
+ "reduce_bucket_size": 5e8,
+ "contiguous_gradients" : true
+ },
+ "optimizer": {
+ "type": "AdamW",
+ "params": {
+ "lr": 0.001,
+ "weight_decay": 0.0001,
+ "torch_adam": true,
+ "adam_w_mode": true
+ }
+ }
+}
\ No newline at end of file
diff --git a/examples/libritts/cosyvoice3/cosyvoice b/examples/libritts/cosyvoice3/cosyvoice
new file mode 120000
index 0000000..3903806
--- /dev/null
+++ b/examples/libritts/cosyvoice3/cosyvoice
@@ -0,0 +1 @@
+../../../cosyvoice
\ No newline at end of file
diff --git a/examples/libritts/cosyvoice3/local b/examples/libritts/cosyvoice3/local
new file mode 120000
index 0000000..5e847a1
--- /dev/null
+++ b/examples/libritts/cosyvoice3/local
@@ -0,0 +1 @@
+../cosyvoice/local
\ No newline at end of file
diff --git a/examples/libritts/cosyvoice3/path.sh b/examples/libritts/cosyvoice3/path.sh
new file mode 120000
index 0000000..59f7179
--- /dev/null
+++ b/examples/libritts/cosyvoice3/path.sh
@@ -0,0 +1 @@
+../cosyvoice/path.sh
\ No newline at end of file
diff --git a/examples/libritts/cosyvoice3/run.sh b/examples/libritts/cosyvoice3/run.sh
new file mode 100644
index 0000000..4e6ce11
--- /dev/null
+++ b/examples/libritts/cosyvoice3/run.sh
@@ -0,0 +1,112 @@
+#!/bin/bash
+# Copyright 2024 Alibaba Inc. All Rights Reserved.
+. ./path.sh || exit 1;
+
+stage=-1
+stop_stage=3
+
+data_url=www.openslr.org/resources/60
+data_dir=/mnt/lyuxiang.lx/data/tts/openslr/libritts
+pretrained_model_dir=../../../pretrained_models/CosyVoice3-0.5B
+
+if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
+ echo "Data Download"
+ for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
+ local/download_and_untar.sh ${data_dir} ${data_url} ${part}
+ done
+fi
+
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
+ echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
+ for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
+ mkdir -p data/$x
+ python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x --instruct
+ done
+fi
+
+if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
+ echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
+ for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
+ tools/extract_embedding.py --dir data/$x \
+ --onnx_path $pretrained_model_dir/campplus.onnx
+ done
+fi
+
+if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
+ echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
+ for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
+ tools/extract_speech_token.py --dir data/$x \
+ --onnx_path $pretrained_model_dir/speech_tokenizer_v3.onnx
+ done
+fi
+
+if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
+ echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
+ for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
+ mkdir -p data/$x/parquet
+ tools/make_parquet_list.py --num_utts_per_parquet 1000 \
+ --num_processes 10 \
+ --instruct \
+ --src_dir data/$x \
+ --des_dir data/$x/parquet
+ done
+fi
+
+# train llm
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
+num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
+job_id=1986
+dist_backend="nccl"
+num_workers=2
+prefetch=100
+train_engine=torch_ddp
+if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
+ echo "Run train. We only support llm traning for now"
+ if [ $train_engine == 'deepspeed' ]; then
+ echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
+ fi
+ cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
+ cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
+ # NOTE will update llm/hift training later
+ for model in llm flow hifigan; do
+ torchrun --nnodes=1 --nproc_per_node=$num_gpus \
+ --rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
+ cosyvoice/bin/train.py \
+ --train_engine $train_engine \
+ --config conf/cosyvoice3.yaml \
+ --train_data data/train.data.list \
+ --cv_data data/dev.data.list \
+ --qwen_pretrain_path $pretrained_model_dir/CosyVoice-BlankEN \
+ --model $model \
+ --checkpoint $pretrained_model_dir/$model.pt \
+ --model_dir `pwd`/exp/cosyvoice3/$model/$train_engine \
+ --tensorboard_dir `pwd`/tensorboard/cosyvoice3/$model/$train_engine \
+ --ddp.dist_backend $dist_backend \
+ --num_workers ${num_workers} \
+ --prefetch ${prefetch} \
+ --pin_memory \
+ --use_amp \
+ --deepspeed_config ./conf/ds_stage2.json \
+ --deepspeed.save_states model+optimizer
+ done
+fi
+
+# average model
+average_num=5
+if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
+ for model in llm flow hifigan; do
+ decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
+ echo "do model average and final checkpoint is $decode_checkpoint"
+ python cosyvoice/bin/average_model.py \
+ --dst_model $decode_checkpoint \
+ --src_path `pwd`/exp/cosyvoice/$model/$train_engine \
+ --num ${average_num} \
+ --val_best
+ done
+fi
+
+if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
+ echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
+ python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
+ python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
+fi
\ No newline at end of file
diff --git a/examples/libritts/cosyvoice3/tools b/examples/libritts/cosyvoice3/tools
new file mode 120000
index 0000000..c92f417
--- /dev/null
+++ b/examples/libritts/cosyvoice3/tools
@@ -0,0 +1 @@
+../../../tools
\ No newline at end of file
diff --git a/requirements.txt b/requirements.txt
index cd3b5ef..f776cbf 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -29,9 +29,9 @@ pyworld==0.3.4
rich==13.7.1
soundfile==0.12.1
tensorboard==2.14.0
-tensorrt-cu12==10.0.1; sys_platform == 'linux'
-tensorrt-cu12-bindings==10.0.1; sys_platform == 'linux'
-tensorrt-cu12-libs==10.0.1; sys_platform == 'linux'
+tensorrt-cu12==10.13.3.9; sys_platform == 'linux'
+tensorrt-cu12-bindings==10.13.3.9; sys_platform == 'linux'
+tensorrt-cu12-libs==10.13.3.9; sys_platform == 'linux'
torch==2.3.1
torchaudio==2.3.1
transformers==4.51.3
diff --git a/tools/make_parquet_list.py b/tools/make_parquet_list.py
index 8920841..29f42cc 100755
--- a/tools/make_parquet_list.py
+++ b/tools/make_parquet_list.py
@@ -37,6 +37,8 @@ def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
speech_token_list = [utt2speech_token.get(utt, []) for utt in utt_list]
if args.dpo:
reject_speech_token_list = [utt2reject_speech_token[utt] for utt in utt_list]
+ if args.instruct:
+ instruct_list = [utt2instruct[utt] for utt in utt_list]
# 保存到parquet,utt2parquet_file,spk2parquet_file
df = pd.DataFrame()
@@ -50,6 +52,8 @@ def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
df['speech_token'] = speech_token_list
if args.dpo:
df['reject_speech_token'] = reject_speech_token_list
+ if args.instruct:
+ df['instruct'] = instruct_list
df.to_parquet(parquet_file)
with open(utt2parquet_file, 'w') as f:
json.dump({k: parquet_file for k in utt_list}, f, ensure_ascii=False, indent=2)
@@ -68,6 +72,10 @@ if __name__ == "__main__":
type=int,
default=1,
help='num processes for make parquets')
+ parser.add_argument('--instruct',
+ action='store_true',
+ default=False,
+ help='has instruct file or not')
parser.add_argument('--src_dir',
type=str)
parser.add_argument('--des_dir',
@@ -91,6 +99,11 @@ if __name__ == "__main__":
for l in f:
l = l.replace('\n', '').split()
utt2spk[l[0]] = l[1]
+ if args.instruct is True:
+ with open('{}/instruct'.format(args.src_dir)) as f:
+ for l in f:
+ l = l.replace('\n', '').split()
+ utt2instruct[l[0]] = ' '.join(l[1:])
utt2embedding = torch.load('{}/utt2embedding.pt'.format(args.src_dir))
spk2embedding = torch.load('{}/spk2embedding.pt'.format(args.src_dir))
utt2speech_token = torch.load('{}/utt2speech_token.pt'.format(args.src_dir))
diff --git a/vllm_example.py b/vllm_example.py
index e613033..697d7a9 100644
--- a/vllm_example.py
+++ b/vllm_example.py
@@ -4,20 +4,36 @@ from vllm import ModelRegistry
from cosyvoice.vllm.cosyvoice2 import CosyVoice2ForCausalLM
ModelRegistry.register_model("CosyVoice2ForCausalLM", CosyVoice2ForCausalLM)
-from cosyvoice.cli.cosyvoice import CosyVoice2
-from cosyvoice.utils.file_utils import load_wav
+from cosyvoice.cli.cosyvoice import AutoModel
from cosyvoice.utils.common import set_all_random_seed
from tqdm import tqdm
-def main():
- cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=True, load_trt=True, load_vllm=True, fp16=True)
- prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
+def cosyvoice2_example():
+ """ CosyVoice2 vllm usage
+ """
+ cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice2-0.5B', load_jit=True, load_trt=True, load_vllm=True, fp16=True)
for i in tqdm(range(100)):
set_all_random_seed(i)
- for _, _ in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
+ for _, _ in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav', stream=False)):
continue
+def cosyvoice3_example():
+ """ CosyVoice3 vllm usage
+ """
+ cosyvoice = AutoModel(model_dir='pretrained_models/Fun-CosyVoice3-0.5B', load_trt=True, load_vllm=True, fp16=False)
+ for i in tqdm(range(100)):
+ set_all_random_seed(i)
+ for _, _ in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', 'You are a helpful assistant.<|endofprompt|>希望你以后能够做的比我还好呦。',
+ './asset/zero_shot_prompt.wav', stream=False)):
+ continue
+
+
+def main():
+ # cosyvoice2_example()
+ cosyvoice3_example()
+
+
if __name__ == '__main__':
main()
diff --git a/webui.py b/webui.py
index 3552cd9..debf5d3 100644
--- a/webui.py
+++ b/webui.py
@@ -22,8 +22,8 @@ import random
import librosa
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
-from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
-from cosyvoice.utils.file_utils import load_wav, logging
+from cosyvoice.cli.cosyvoice import AutoModel
+from cosyvoice.utils.file_utils import logging
from cosyvoice.utils.common import set_all_random_seed
inference_mode_list = ['预训练音色', '3s极速复刻', '跨语种复刻', '自然语言控制']
@@ -43,18 +43,6 @@ def generate_seed():
}
-def postprocess(speech, top_db=60, hop_length=220, win_length=440):
- speech, _ = librosa.effects.trim(
- speech, top_db=top_db,
- frame_length=win_length,
- hop_length=hop_length
- )
- if speech.abs().max() > max_val:
- speech = speech / speech.abs().max() * max_val
- speech = torch.concat([speech, torch.zeros(1, int(cosyvoice.sample_rate * 0.2))], dim=1)
- return speech
-
-
def change_instruction(mode_checkbox_group):
return instruct_dict[mode_checkbox_group]
@@ -118,15 +106,13 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
elif mode_checkbox_group == '3s极速复刻':
logging.info('get zero_shot inference request')
- prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
set_all_random_seed(seed)
- for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed):
+ for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_wav, stream=stream, speed=speed):
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
elif mode_checkbox_group == '跨语种复刻':
logging.info('get cross_lingual inference request')
- prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
set_all_random_seed(seed)
- for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream, speed=speed):
+ for i in cosyvoice.inference_cross_lingual(tts_text, prompt_wav, stream=stream, speed=speed):
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
else:
logging.info('get instruct inference request')
@@ -181,16 +167,10 @@ if __name__ == '__main__':
default=8000)
parser.add_argument('--model_dir',
type=str,
- default='pretrained_models/CosyVoice2-0.5B',
+ default='pretrained_models/CosyVoice3-0.5B',
help='local path or modelscope repo id')
args = parser.parse_args()
- try:
- cosyvoice = CosyVoice(args.model_dir)
- except Exception:
- try:
- cosyvoice = CosyVoice2(args.model_dir)
- except Exception:
- raise TypeError('no valid model_type!')
+ cosyvoice = AutoModel(model_dir=args.model_dir)
sft_spk = cosyvoice.list_available_spks()
if len(sft_spk) == 0: