update readme

This commit is contained in:
root
2025-07-30 11:05:49 +00:00
parent 62d082634e
commit 0bc48c1180
6 changed files with 54 additions and 19 deletions

View File

@@ -3,7 +3,7 @@
set -eou pipefail
stage=-1
stop_stage=5
stop_stage=4
log() {
# This function is from espnet
@@ -15,6 +15,22 @@ export PYTHONPATH=/workspace/CosyVoice
model_scope_model_path=./CosyVoice2-0.5B
sft_model_path=./transformers_cosyvoice2_llm
if [ $stage -le -2 ] && [ $stop_stage -ge -2 ]; then
log "stage -2: install dependencies locally if pre-built docker image is not available"
conda create -n cosyvoice2 python=3.10 -y
conda activate cosyvoice2
# install verl
git clone https://github.com/yuekaizhang/verl.git -b thread
cd verl
USE_MEGATRON=0 bash scripts/install_vllm_sglang_mcore.sh
pip install --no-deps -e .
cd -
# install requirements
pip install -r requirements.txt
pip install -U nvidia-pytriton
git clone https://github.com/yuekaizhang/PytritonSenseVoice.git && cd PytritonSenseVoice && pip install -e .
fi
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "stage -1: download official CosyVoice2-0.5B LLM model and convert to huggingface compatible checkpoint"
modelscope download --model iic/CosyVoice2-0.5B --local_dir $model_scope_model_path
@@ -24,13 +40,15 @@ if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
# Or, you could use the following command to download the huggingface compatible checkpoint
# huggingface-cli download --local-dir $sft_model_path yuekai/cosyvoice2_llm
# Note: we remove the lm_head's bias to make it compatible with the Qwen2.5-0.5B model in Transformers.
fi
data_dir=data/parquet_aishell3
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "stage 0: prepare data into verl format"
mkdir -p $data_dir
wget https://huggingface.co/datasets/SparkAudio/voxbox/resolve/main/metadata/aishell-3.jsonl -O data/aishell-3.jsonl
wget -O data/aishell-3.jsonl https://huggingface.co/datasets/SparkAudio/voxbox/resolve/main/metadata/aishell-3.jsonl
# total 88035 samples
head -n 80000 data/aishell-3.jsonl > data/train.jsonl
tail -n 100 data/aishell-3.jsonl > data/test.jsonl
@@ -98,7 +116,8 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
trainer.val_before_train=False
fi
step=400
steps=(100 200 300 400 500)
for step in ${steps[@]}; do
llm_path=./checkpoints/cosyvoice2_grpo/$exp_name/global_step_${step}
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "stage 3: merge the model"
@@ -111,7 +130,7 @@ fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "stage 4: Test the model"
dataset=zero_shot_zh
# dataset=test_zh
# dataset=test_zh seed_tts test_zh
output_dir=./outputs_${exp_name}_${step}_${dataset}
token2wav_path=/workspace/CosyVoice2-0.5B
@@ -127,12 +146,14 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
bash scripts/compute_wer.sh $output_dir ${dataset}
fi
done
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "stage 5: Convert the RL trained model to CosyVoice repo format"
python3 huggingface_to_pretrained.py \
--hf-cosyvoice2-llm-path $llm_path/merged_hf_model \
--pretrained-cosyvoice2-path /workspace/CosyVoice2-0.5B \
--output-path /workspace/CosyVoice2-0.5B/llm-new.pt
# You need to manually move the llm-new.pt to overwrite /workspace/CosyVoice2-0.5B/llm.pt
# However, we found that the RL trained model accuracy would slightly drop after this conversion.
# Please be careful or use the huggingface format inference code.
fi