This commit is contained in:
root
2025-07-29 08:39:41 +00:00
parent 1b8d194b67
commit 07cbc51cd1
8 changed files with 165 additions and 157 deletions

View File

@@ -1,4 +1,3 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
# 2023 Nvidia (authors: Yuekai Zhang)
# 2023 Recurrent.ai (authors: Songtao Shi)
@@ -46,7 +45,7 @@ import asyncio
import json
import queue # Added
import uuid # Added
import functools # Added
import functools # Added
import os
import time
@@ -56,9 +55,9 @@ from pathlib import Path
import numpy as np
import soundfile as sf
import tritonclient
import tritonclient.grpc.aio as grpcclient_aio # Renamed original import
import tritonclient.grpc as grpcclient_sync # Added sync client import
from tritonclient.utils import np_to_triton_dtype, InferenceServerException # Added InferenceServerException
import tritonclient.grpc.aio as grpcclient_aio # Renamed original import
import tritonclient.grpc as grpcclient_sync # Added sync client import
from tritonclient.utils import np_to_triton_dtype, InferenceServerException # Added InferenceServerException
# --- Added UserData and callback ---
@@ -76,9 +75,10 @@ class UserData:
return self._first_chunk_time - self._start_time
return None
def callback(user_data, result, error):
if user_data._first_chunk_time is None and not error:
user_data._first_chunk_time = time.time() # Record time of first successful chunk
user_data._first_chunk_time = time.time() # Record time of first successful chunk
if error:
user_data._completed_requests.put(error)
else:
@@ -206,8 +206,11 @@ def get_args():
"--model-name",
type=str,
default="f5_tts",
choices=["f5_tts", "spark_tts", "cosyvoice2"],
help="triton model_repo module name to request: transducer for k2, attention_rescoring for wenet offline, streaming_wenet for wenet streaming, infer_pipeline for paraformer large offline",
choices=[
"f5_tts",
"spark_tts",
"cosyvoice2"],
help="triton model_repo module name to request",
)
parser.add_argument(
@@ -273,13 +276,14 @@ def load_audio(wav_path, target_sample_rate=16000):
waveform = resample(waveform, num_samples)
return waveform, target_sample_rate
def prepare_request_input_output(
protocol_client, # Can be grpcclient_aio or grpcclient_sync
protocol_client, # Can be grpcclient_aio or grpcclient_sync
waveform,
reference_text,
target_text,
sample_rate=16000,
padding_duration: int = None # Optional padding for offline mode
padding_duration: int = None # Optional padding for offline mode
):
"""Prepares inputs for Triton inference (offline or streaming)."""
assert len(waveform.shape) == 1, "waveform should be 1D"
@@ -291,9 +295,9 @@ def prepare_request_input_output(
# Estimate target duration based on text length ratio (crude estimation)
# Avoid division by zero if reference_text is empty
if reference_text:
estimated_target_duration = duration / len(reference_text) * len(target_text)
estimated_target_duration = duration / len(reference_text) * len(target_text)
else:
estimated_target_duration = duration # Assume target duration similar to reference if no text
estimated_target_duration = duration # Assume target duration similar to reference if no text
# Calculate required samples based on estimated total duration
required_total_samples = padding_duration * sample_rate * (
@@ -329,6 +333,7 @@ def prepare_request_input_output(
return inputs, outputs
def run_sync_streaming_inference(
sync_triton_client: tritonclient.grpc.InferenceServerClient,
model_name: str,
@@ -342,7 +347,7 @@ def run_sync_streaming_inference(
):
"""Helper function to run the blocking sync streaming call."""
start_time_total = time.time()
user_data.record_start_time() # Record start time for first chunk latency calculation
user_data.record_start_time() # Record start time for first chunk latency calculation
# Establish stream
sync_triton_client.start_stream(callback=functools.partial(callback, user_data))
@@ -360,11 +365,11 @@ def run_sync_streaming_inference(
audios = []
while True:
try:
result = user_data._completed_requests.get() # Add timeout
result = user_data._completed_requests.get() # Add timeout
if isinstance(result, InferenceServerException):
print(f"Received InferenceServerException: {result}")
sync_triton_client.stop_stream()
return None, None, None # Indicate error
return None, None, None # Indicate error
# Get response metadata
response = result.get_response()
final = response.parameters["triton_final_response"].bool_param
@@ -372,15 +377,15 @@ def run_sync_streaming_inference(
break
audio_chunk = result.as_numpy("waveform").reshape(-1)
if audio_chunk.size > 0: # Only append non-empty chunks
audios.append(audio_chunk)
if audio_chunk.size > 0: # Only append non-empty chunks
audios.append(audio_chunk)
else:
print("Warning: received empty audio chunk.")
except queue.Empty:
print(f"Timeout waiting for response for request id {request_id}")
sync_triton_client.stop_stream()
return None, None, None # Indicate error
return None, None, None # Indicate error
sync_triton_client.stop_stream()
end_time_total = time.time()
@@ -398,19 +403,19 @@ def run_sync_streaming_inference(
# Simplified reconstruction based on client_grpc_streaming.py
if not audios:
print("Warning: No audio chunks received.")
reconstructed_audio = np.array([], dtype=np.float32) # Empty array
reconstructed_audio = np.array([], dtype=np.float32) # Empty array
elif len(audios) == 1:
reconstructed_audio = audios[0]
else:
reconstructed_audio = audios[0][:-cross_fade_samples] # Start with first chunk minus overlap
reconstructed_audio = audios[0][:-cross_fade_samples] # Start with first chunk minus overlap
for i in range(1, len(audios)):
# Cross-fade section
cross_faded_overlap = (audios[i][:cross_fade_samples] * fade_in +
audios[i - 1][-cross_fade_samples:] * fade_out)
# Middle section of the current chunk
middle_part = audios[i][cross_fade_samples:-cross_fade_samples]
# Concatenate
reconstructed_audio = np.concatenate([reconstructed_audio, cross_faded_overlap, middle_part])
# Cross-fade section
cross_faded_overlap = (audios[i][:cross_fade_samples] * fade_in +
audios[i - 1][-cross_fade_samples:] * fade_out)
# Middle section of the current chunk
middle_part = audios[i][cross_fade_samples:-cross_fade_samples]
# Concatenate
reconstructed_audio = np.concatenate([reconstructed_audio, cross_faded_overlap, middle_part])
# Add the last part of the final chunk
reconstructed_audio = np.concatenate([reconstructed_audio, audios[-1][-cross_fade_samples:]])
@@ -421,11 +426,11 @@ def run_sync_streaming_inference(
sf.write(audio_save_path, reconstructed_audio, save_sample_rate, "PCM_16")
else:
print("Warning: No audio chunks received or reconstructed.")
actual_duration = 0 # Set duration to 0 if no audio
actual_duration = 0 # Set duration to 0 if no audio
else:
print("Warning: No audio chunks received.")
actual_duration = 0
print("Warning: No audio chunks received.")
actual_duration = 0
return total_request_latency, first_chunk_latency, actual_duration
@@ -433,7 +438,7 @@ def run_sync_streaming_inference(
async def send_streaming(
manifest_item_list: list,
name: str,
server_url: str, # Changed from sync_triton_client
server_url: str, # Changed from sync_triton_client
protocol_client: types.ModuleType,
log_interval: int,
model_name: str,
@@ -445,11 +450,11 @@ async def send_streaming(
total_duration = 0.0
latency_data = []
task_id = int(name[5:])
sync_triton_client = None # Initialize client variable
sync_triton_client = None # Initialize client variable
try: # Wrap in try...finally to ensure client closing
try: # Wrap in try...finally to ensure client closing
print(f"{name}: Initializing sync client for streaming...")
sync_triton_client = grpcclient_sync.InferenceServerClient(url=server_url, verbose=False) # Create client here
sync_triton_client = grpcclient_sync.InferenceServerClient(url=server_url, verbose=False) # Create client here
print(f"{name}: Starting streaming processing for {len(manifest_item_list)} items.")
for i, item in enumerate(manifest_item_list):
@@ -491,8 +496,7 @@ async def send_streaming(
latency_data.append((total_request_latency, first_chunk_latency, actual_duration))
total_duration += actual_duration
else:
print(f"{name}: Item {i} failed.")
print(f"{name}: Item {i} failed.")
except FileNotFoundError:
print(f"Error: Audio file not found for item {i}: {item['audio_filepath']}")
@@ -501,8 +505,7 @@ async def send_streaming(
import traceback
traceback.print_exc()
finally: # Ensure client is closed
finally: # Ensure client is closed
if sync_triton_client:
try:
print(f"{name}: Closing sync client...")
@@ -510,10 +513,10 @@ async def send_streaming(
except Exception as e:
print(f"{name}: Error closing sync client: {e}")
print(f"{name}: Finished streaming processing. Total duration synthesized: {total_duration:.4f}s")
return total_duration, latency_data
async def send(
manifest_item_list: list,
name: str,
@@ -605,6 +608,7 @@ def split_data(data, k):
return result
async def main():
args = get_args()
url = f"{args.server_addr}:{args.server_port}"
@@ -622,7 +626,7 @@ async def main():
# Use the sync client for streaming tasks, handled via asyncio.to_thread
# We will create one sync client instance PER TASK inside send_streaming.
# triton_client = grpcclient_sync.InferenceServerClient(url=url, verbose=False) # REMOVED: Client created per task now
protocol_client = grpcclient_sync # protocol client for input prep
protocol_client = grpcclient_sync # protocol client for input prep
else:
raise ValueError(f"Invalid mode: {args.mode}")
# --- End Client Initialization ---
@@ -682,11 +686,11 @@ async def main():
)
)
elif args.mode == "streaming":
task = asyncio.create_task(
task = asyncio.create_task(
send_streaming(
manifest_item_list[i],
name=f"task-{i}",
server_url=url, # Pass URL instead of client
server_url=url, # Pass URL instead of client
protocol_client=protocol_client,
log_interval=args.log_interval,
model_name=args.model_name,
@@ -709,16 +713,15 @@ async def main():
for ans in ans_list:
if ans:
total_duration += ans[0]
latency_data.extend(ans[1]) # Use extend for list of lists
latency_data.extend(ans[1]) # Use extend for list of lists
else:
print("Warning: A task returned None, possibly due to an error.")
print("Warning: A task returned None, possibly due to an error.")
if total_duration == 0:
print("Total synthesized duration is zero. Cannot calculate RTF or latency percentiles.")
rtf = float('inf')
else:
rtf = elapsed / total_duration
rtf = elapsed / total_duration
s = f"Mode: {args.mode}\n"
s += f"RTF: {rtf:.4f}\n"
@@ -759,7 +762,7 @@ async def main():
s += f"total_request_latency_99_percentile_ms: {np.percentile(total_latency_list, 99) * 1000.0:.2f}\n"
s += f"average_total_request_latency_ms: {avg_total_latency_ms:.2f}\n"
else:
s += "No total request latency data collected.\n"
s += "No total request latency data collected.\n"
s += "\n--- First Chunk Latency ---\n"
if first_chunk_latency_list:
@@ -772,7 +775,7 @@ async def main():
s += f"first_chunk_latency_99_percentile_ms: {np.percentile(first_chunk_latency_list, 99) * 1000.0:.2f}\n"
s += f"average_first_chunk_latency_ms: {avg_first_chunk_latency_ms:.2f}\n"
else:
s += "No first chunk latency data collected (check for errors or if all requests failed before first chunk).\n"
s += "No first chunk latency data collected (check for errors or if all requests failed before first chunk).\n"
else:
s += "No latency data collected.\n"
# --- End Statistics Reporting ---
@@ -785,7 +788,7 @@ async def main():
elif args.reference_audio:
name = Path(args.reference_audio).stem
else:
name = "results" # Default name if no manifest/split/audio provided
name = "results" # Default name if no manifest/split/audio provided
with open(f"{args.log_dir}/rtf-{name}.txt", "w") as f:
f.write(s)