mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
add cosyvoice code
This commit is contained in:
115
cosyvoice/transformer/positionwise_feed_forward.py
Normal file
115
cosyvoice/transformer/positionwise_feed_forward.py
Normal file
@@ -0,0 +1,115 @@
|
||||
# Copyright (c) 2019 Shigeki Karita
|
||||
# 2020 Mobvoi Inc (Binbin Zhang)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Positionwise feed forward layer definition."""
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class PositionwiseFeedForward(torch.nn.Module):
|
||||
"""Positionwise feed forward layer.
|
||||
|
||||
FeedForward are appied on each position of the sequence.
|
||||
The output dim is same with the input dim.
|
||||
|
||||
Args:
|
||||
idim (int): Input dimenstion.
|
||||
hidden_units (int): The number of hidden units.
|
||||
dropout_rate (float): Dropout rate.
|
||||
activation (torch.nn.Module): Activation function
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
idim: int,
|
||||
hidden_units: int,
|
||||
dropout_rate: float,
|
||||
activation: torch.nn.Module = torch.nn.ReLU(),
|
||||
):
|
||||
"""Construct a PositionwiseFeedForward object."""
|
||||
super(PositionwiseFeedForward, self).__init__()
|
||||
self.w_1 = torch.nn.Linear(idim, hidden_units)
|
||||
self.activation = activation
|
||||
self.dropout = torch.nn.Dropout(dropout_rate)
|
||||
self.w_2 = torch.nn.Linear(hidden_units, idim)
|
||||
|
||||
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
||||
"""Forward function.
|
||||
|
||||
Args:
|
||||
xs: input tensor (B, L, D)
|
||||
Returns:
|
||||
output tensor, (B, L, D)
|
||||
"""
|
||||
return self.w_2(self.dropout(self.activation(self.w_1(xs))))
|
||||
|
||||
|
||||
class MoEFFNLayer(torch.nn.Module):
|
||||
"""
|
||||
Mixture of expert with Positionwise feed forward layer
|
||||
See also figure 1 in https://arxiv.org/pdf/2305.15663.pdf
|
||||
The output dim is same with the input dim.
|
||||
|
||||
Modified from https://github.com/Lightning-AI/lit-gpt/pull/823
|
||||
https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219
|
||||
Args:
|
||||
n_expert: number of expert.
|
||||
n_expert_per_token: The actual number of experts used for each frame
|
||||
idim (int): Input dimenstion.
|
||||
hidden_units (int): The number of hidden units.
|
||||
dropout_rate (float): Dropout rate.
|
||||
activation (torch.nn.Module): Activation function
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_expert: int,
|
||||
n_expert_per_token: int,
|
||||
idim: int,
|
||||
hidden_units: int,
|
||||
dropout_rate: float,
|
||||
activation: torch.nn.Module = torch.nn.ReLU(),
|
||||
):
|
||||
super(MoEFFNLayer, self).__init__()
|
||||
self.gate = torch.nn.Linear(idim, n_expert, bias=False)
|
||||
self.experts = torch.nn.ModuleList(
|
||||
PositionwiseFeedForward(idim, hidden_units, dropout_rate,
|
||||
activation) for _ in range(n_expert))
|
||||
self.n_expert_per_token = n_expert_per_token
|
||||
|
||||
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
||||
"""Foward function.
|
||||
Args:
|
||||
xs: input tensor (B, L, D)
|
||||
Returns:
|
||||
output tensor, (B, L, D)
|
||||
|
||||
"""
|
||||
B, L, D = xs.size(
|
||||
) # batch size, sequence length, embedding dimension (idim)
|
||||
xs = xs.view(-1, D) # (B*L, D)
|
||||
router = self.gate(xs) # (B*L, n_expert)
|
||||
logits, indices = torch.topk(
|
||||
router, self.n_expert_per_token
|
||||
) # probs:(B*L, n_expert), indices: (B*L, n_expert)
|
||||
weights = torch.nn.functional.softmax(
|
||||
logits, dim=1,
|
||||
dtype=torch.float).to(dtype=xs.dtype) # (B*L, n_expert_per_token)
|
||||
output = torch.zeros_like(xs) # (B*L, D)
|
||||
for i, expert in enumerate(self.experts):
|
||||
mask = indices == i
|
||||
batch_idx, ith_expert = torch.where(mask)
|
||||
output[batch_idx] += weights[batch_idx, ith_expert, None] * expert(
|
||||
xs[batch_idx])
|
||||
return output.view(B, L, D)
|
||||
Reference in New Issue
Block a user