mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
add cosyvoice code
This commit is contained in:
326
cosyvoice/transformer/attention.py
Normal file
326
cosyvoice/transformer/attention.py
Normal file
@@ -0,0 +1,326 @@
|
||||
# Copyright (c) 2019 Shigeki Karita
|
||||
# 2020 Mobvoi Inc (Binbin Zhang)
|
||||
# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
|
||||
# 2024 Alibaba Inc (Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Multi-Head Attention layer definition."""
|
||||
|
||||
import math
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class MultiHeadedAttention(nn.Module):
|
||||
"""Multi-Head Attention layer.
|
||||
|
||||
Args:
|
||||
n_head (int): The number of heads.
|
||||
n_feat (int): The number of features.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
n_head: int,
|
||||
n_feat: int,
|
||||
dropout_rate: float,
|
||||
key_bias: bool = True):
|
||||
"""Construct an MultiHeadedAttention object."""
|
||||
super().__init__()
|
||||
assert n_feat % n_head == 0
|
||||
# We assume d_v always equals d_k
|
||||
self.d_k = n_feat // n_head
|
||||
self.h = n_head
|
||||
self.linear_q = nn.Linear(n_feat, n_feat)
|
||||
self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
|
||||
self.linear_v = nn.Linear(n_feat, n_feat)
|
||||
self.linear_out = nn.Linear(n_feat, n_feat)
|
||||
self.dropout = nn.Dropout(p=dropout_rate)
|
||||
|
||||
def forward_qkv(
|
||||
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Transform query, key and value.
|
||||
|
||||
Args:
|
||||
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||||
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||||
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Transformed query tensor, size
|
||||
(#batch, n_head, time1, d_k).
|
||||
torch.Tensor: Transformed key tensor, size
|
||||
(#batch, n_head, time2, d_k).
|
||||
torch.Tensor: Transformed value tensor, size
|
||||
(#batch, n_head, time2, d_k).
|
||||
|
||||
"""
|
||||
n_batch = query.size(0)
|
||||
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
||||
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
||||
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
||||
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
||||
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
||||
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
||||
|
||||
return q, k, v
|
||||
|
||||
def forward_attention(
|
||||
self,
|
||||
value: torch.Tensor,
|
||||
scores: torch.Tensor,
|
||||
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
|
||||
) -> torch.Tensor:
|
||||
"""Compute attention context vector.
|
||||
|
||||
Args:
|
||||
value (torch.Tensor): Transformed value, size
|
||||
(#batch, n_head, time2, d_k).
|
||||
scores (torch.Tensor): Attention score, size
|
||||
(#batch, n_head, time1, time2).
|
||||
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
|
||||
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Transformed value (#batch, time1, d_model)
|
||||
weighted by the attention score (#batch, time1, time2).
|
||||
|
||||
"""
|
||||
n_batch = value.size(0)
|
||||
# NOTE(xcsong): When will `if mask.size(2) > 0` be True?
|
||||
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
|
||||
# 1st chunk to ease the onnx export.]
|
||||
# 2. pytorch training
|
||||
if mask.size(2) > 0: # time2 > 0
|
||||
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
||||
# For last chunk, time2 might be larger than scores.size(-1)
|
||||
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
|
||||
scores = scores.masked_fill(mask, -float('inf'))
|
||||
attn = torch.softmax(scores, dim=-1).masked_fill(
|
||||
mask, 0.0) # (batch, head, time1, time2)
|
||||
# NOTE(xcsong): When will `if mask.size(2) > 0` be False?
|
||||
# 1. onnx(16/-1, -1/-1, 16/0)
|
||||
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
|
||||
else:
|
||||
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
||||
|
||||
p_attn = self.dropout(attn)
|
||||
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
||||
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
|
||||
self.h * self.d_k)
|
||||
) # (batch, time1, d_model)
|
||||
|
||||
return self.linear_out(x) # (batch, time1, d_model)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
||||
pos_emb: torch.Tensor = torch.empty(0),
|
||||
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute scaled dot product attention.
|
||||
|
||||
Args:
|
||||
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||||
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||||
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||||
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
||||
(#batch, time1, time2).
|
||||
1.When applying cross attention between decoder and encoder,
|
||||
the batch padding mask for input is in (#batch, 1, T) shape.
|
||||
2.When applying self attention of encoder,
|
||||
the mask is in (#batch, T, T) shape.
|
||||
3.When applying self attention of decoder,
|
||||
the mask is in (#batch, L, L) shape.
|
||||
4.If the different position in decoder see different block
|
||||
of the encoder, such as Mocha, the passed in mask could be
|
||||
in (#batch, L, T) shape. But there is no such case in current
|
||||
Wenet.
|
||||
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
||||
where `cache_t == chunk_size * num_decoding_left_chunks`
|
||||
and `head * d_k == size`
|
||||
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time1, d_model).
|
||||
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
||||
where `cache_t == chunk_size * num_decoding_left_chunks`
|
||||
and `head * d_k == size`
|
||||
|
||||
"""
|
||||
q, k, v = self.forward_qkv(query, key, value)
|
||||
|
||||
# NOTE(xcsong):
|
||||
# when export onnx model, for 1st chunk, we feed
|
||||
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
||||
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
||||
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
||||
# and we will always do splitting and
|
||||
# concatnation(this will simplify onnx export). Note that
|
||||
# it's OK to concat & split zero-shaped tensors(see code below).
|
||||
# when export jit model, for 1st chunk, we always feed
|
||||
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
||||
# >>> a = torch.ones((1, 2, 0, 4))
|
||||
# >>> b = torch.ones((1, 2, 3, 4))
|
||||
# >>> c = torch.cat((a, b), dim=2)
|
||||
# >>> torch.equal(b, c) # True
|
||||
# >>> d = torch.split(a, 2, dim=-1)
|
||||
# >>> torch.equal(d[0], d[1]) # True
|
||||
if cache.size(0) > 0:
|
||||
key_cache, value_cache = torch.split(cache,
|
||||
cache.size(-1) // 2,
|
||||
dim=-1)
|
||||
k = torch.cat([key_cache, k], dim=2)
|
||||
v = torch.cat([value_cache, v], dim=2)
|
||||
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
||||
# non-trivial to calculate `next_cache_start` here.
|
||||
new_cache = torch.cat((k, v), dim=-1)
|
||||
|
||||
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
||||
return self.forward_attention(v, scores, mask), new_cache
|
||||
|
||||
|
||||
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
||||
"""Multi-Head Attention layer with relative position encoding.
|
||||
Paper: https://arxiv.org/abs/1901.02860
|
||||
Args:
|
||||
n_head (int): The number of heads.
|
||||
n_feat (int): The number of features.
|
||||
dropout_rate (float): Dropout rate.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
n_head: int,
|
||||
n_feat: int,
|
||||
dropout_rate: float,
|
||||
key_bias: bool = True):
|
||||
"""Construct an RelPositionMultiHeadedAttention object."""
|
||||
super().__init__(n_head, n_feat, dropout_rate, key_bias)
|
||||
# linear transformation for positional encoding
|
||||
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
||||
# these two learnable bias are used in matrix c and matrix d
|
||||
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
||||
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
||||
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
||||
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
||||
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
||||
|
||||
def rel_shift(self, x):
|
||||
"""Compute relative positional encoding.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
|
||||
time1 means the length of query vector.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Output tensor.
|
||||
|
||||
"""
|
||||
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
|
||||
x_padded = torch.cat([zero_pad, x], dim=-1)
|
||||
|
||||
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
|
||||
x = x_padded[:, :, 1:].view_as(x)[
|
||||
:, :, :, : x.size(-1) // 2 + 1
|
||||
] # only keep the positions from 0 to time2
|
||||
return x
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
||||
pos_emb: torch.Tensor = torch.empty(0),
|
||||
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
||||
Args:
|
||||
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||||
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||||
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||||
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
||||
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
||||
pos_emb (torch.Tensor): Positional embedding tensor
|
||||
(#batch, time2, size).
|
||||
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
||||
where `cache_t == chunk_size * num_decoding_left_chunks`
|
||||
and `head * d_k == size`
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time1, d_model).
|
||||
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
||||
where `cache_t == chunk_size * num_decoding_left_chunks`
|
||||
and `head * d_k == size`
|
||||
"""
|
||||
q, k, v = self.forward_qkv(query, key, value)
|
||||
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
||||
|
||||
# NOTE(xcsong):
|
||||
# when export onnx model, for 1st chunk, we feed
|
||||
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
||||
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
||||
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
||||
# and we will always do splitting and
|
||||
# concatnation(this will simplify onnx export). Note that
|
||||
# it's OK to concat & split zero-shaped tensors(see code below).
|
||||
# when export jit model, for 1st chunk, we always feed
|
||||
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
||||
# >>> a = torch.ones((1, 2, 0, 4))
|
||||
# >>> b = torch.ones((1, 2, 3, 4))
|
||||
# >>> c = torch.cat((a, b), dim=2)
|
||||
# >>> torch.equal(b, c) # True
|
||||
# >>> d = torch.split(a, 2, dim=-1)
|
||||
# >>> torch.equal(d[0], d[1]) # True
|
||||
if cache.size(0) > 0:
|
||||
key_cache, value_cache = torch.split(cache,
|
||||
cache.size(-1) // 2,
|
||||
dim=-1)
|
||||
k = torch.cat([key_cache, k], dim=2)
|
||||
v = torch.cat([value_cache, v], dim=2)
|
||||
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
||||
# non-trivial to calculate `next_cache_start` here.
|
||||
new_cache = torch.cat((k, v), dim=-1)
|
||||
|
||||
n_batch_pos = pos_emb.size(0)
|
||||
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
||||
p = p.transpose(1, 2) # (batch, head, time1, d_k)
|
||||
|
||||
# (batch, head, time1, d_k)
|
||||
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
||||
# (batch, head, time1, d_k)
|
||||
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
||||
|
||||
# compute attention score
|
||||
# first compute matrix a and matrix c
|
||||
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
||||
# (batch, head, time1, time2)
|
||||
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
||||
|
||||
# compute matrix b and matrix d
|
||||
# (batch, head, time1, time2)
|
||||
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
||||
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
|
||||
if matrix_ac.shape != matrix_bd.shape:
|
||||
matrix_bd = self.rel_shift(matrix_bd)
|
||||
|
||||
scores = (matrix_ac + matrix_bd) / math.sqrt(
|
||||
self.d_k) # (batch, head, time1, time2)
|
||||
|
||||
return self.forward_attention(v, scores, mask), new_cache
|
||||
Reference in New Issue
Block a user