mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
add cosyvoice code
This commit is contained in:
135
cosyvoice/flow/flow.py
Normal file
135
cosyvoice/flow/flow.py
Normal file
@@ -0,0 +1,135 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
from typing import Dict, Optional
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from omegaconf import DictConfig
|
||||
from cosyvoice.utils.mask import make_pad_mask
|
||||
|
||||
|
||||
class MaskedDiffWithXvec(torch.nn.Module):
|
||||
def __init__(self,
|
||||
input_size: int = 512,
|
||||
output_size: int = 80,
|
||||
spk_embed_dim: int = 192,
|
||||
output_type: str = "mel",
|
||||
vocab_size: int = 4096,
|
||||
input_frame_rate: int = 50,
|
||||
only_mask_loss: bool = True,
|
||||
encoder: torch.nn.Module = None,
|
||||
length_regulator: torch.nn.Module = None,
|
||||
decoder: torch.nn.Module = None,
|
||||
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1, 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine', 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}), 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64, 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
||||
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050, 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
self.output_size = output_size
|
||||
self.decoder_conf = decoder_conf
|
||||
self.mel_feat_conf = mel_feat_conf
|
||||
self.vocab_size = vocab_size
|
||||
self.output_type = output_type
|
||||
self.input_frame_rate = input_frame_rate
|
||||
logging.info(f"input frame rate={self.input_frame_rate}")
|
||||
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
||||
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
||||
self.encoder = encoder
|
||||
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
||||
self.decoder = decoder
|
||||
self.length_regulator = length_regulator
|
||||
self.only_mask_loss = only_mask_loss
|
||||
|
||||
def forward(
|
||||
self,
|
||||
batch: dict,
|
||||
device: torch.device,
|
||||
) -> Dict[str, Optional[torch.Tensor]]:
|
||||
token = batch['speech_token'].to(device)
|
||||
token_len = batch['speech_token_len'].to(device)
|
||||
feat = batch['speech_feat'].to(device)
|
||||
feat_len = batch['speech_feat_len'].to(device)
|
||||
embedding = batch['utt_embedding'].to(device)
|
||||
|
||||
# xvec projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
|
||||
# concat text and prompt_text
|
||||
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||
|
||||
# text encode
|
||||
h, h_lengths = self.encoder(token, token_len)
|
||||
h = self.encoder_proj(h)
|
||||
h, h_lengths = self.length_regulator(h, feat_len)
|
||||
|
||||
# get conditions
|
||||
conds = torch.zeros(feat.shape, device=token.device)
|
||||
conds = conds.transpose(1, 2)
|
||||
|
||||
mask = (~make_pad_mask(feat_len)).to(h)
|
||||
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
||||
loss, _ = self.decoder.compute_loss(
|
||||
feat.transpose(1, 2).contiguous(),
|
||||
mask.unsqueeze(1),
|
||||
h.transpose(1, 2).contiguous(),
|
||||
embedding,
|
||||
cond=conds
|
||||
)
|
||||
return {'loss': loss}
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(self,
|
||||
token,
|
||||
token_len,
|
||||
prompt_token,
|
||||
prompt_token_len,
|
||||
prompt_feat,
|
||||
prompt_feat_len,
|
||||
embedding):
|
||||
assert token.shape[0] == 1
|
||||
# xvec projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
|
||||
# concat text and prompt_text
|
||||
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
||||
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding)
|
||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||
|
||||
# text encode
|
||||
h, h_lengths = self.encoder(token, token_len)
|
||||
h = self.encoder_proj(h)
|
||||
feat_len = (token_len / 50 * 22050 / 256).int()
|
||||
h, h_lengths = self.length_regulator(h, feat_len)
|
||||
|
||||
# get conditions
|
||||
conds = torch.zeros([1, feat_len.max().item(), self.output_size], device=token.device)
|
||||
if prompt_feat.shape[1] != 0:
|
||||
for i, j in enumerate(prompt_feat_len):
|
||||
conds[i, :j] = prompt_feat[i]
|
||||
conds = conds.transpose(1, 2)
|
||||
|
||||
mask = (~make_pad_mask(feat_len)).to(h)
|
||||
feat = self.decoder(
|
||||
mu=h.transpose(1, 2).contiguous(),
|
||||
mask=mask.unsqueeze(1),
|
||||
spks=embedding,
|
||||
cond=conds,
|
||||
n_timesteps=10
|
||||
)
|
||||
if prompt_feat.shape[1] != 0:
|
||||
feat = feat[:, :, prompt_feat.shape[1]:]
|
||||
return feat
|
||||
Reference in New Issue
Block a user