mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
add cosyvoice code
This commit is contained in:
222
cosyvoice/flow/decoder.py
Executable file
222
cosyvoice/flow/decoder.py
Executable file
@@ -0,0 +1,222 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import pack, rearrange, repeat
|
||||
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
||||
from matcha.models.components.transformer import BasicTransformerBlock
|
||||
|
||||
|
||||
class ConditionalDecoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
channels=(256, 256),
|
||||
dropout=0.05,
|
||||
attention_head_dim=64,
|
||||
n_blocks=1,
|
||||
num_mid_blocks=2,
|
||||
num_heads=4,
|
||||
act_fn="snake",
|
||||
):
|
||||
"""
|
||||
This decoder requires an input with the same shape of the target. So, if your text content
|
||||
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
||||
"""
|
||||
super().__init__()
|
||||
channels = tuple(channels)
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
|
||||
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
||||
time_embed_dim = channels[0] * 4
|
||||
self.time_mlp = TimestepEmbedding(
|
||||
in_channels=in_channels,
|
||||
time_embed_dim=time_embed_dim,
|
||||
act_fn="silu",
|
||||
)
|
||||
self.down_blocks = nn.ModuleList([])
|
||||
self.mid_blocks = nn.ModuleList([])
|
||||
self.up_blocks = nn.ModuleList([])
|
||||
|
||||
output_channel = in_channels
|
||||
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
||||
input_channel = output_channel
|
||||
output_channel = channels[i]
|
||||
is_last = i == len(channels) - 1
|
||||
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
dim=output_channel,
|
||||
num_attention_heads=num_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dropout=dropout,
|
||||
activation_fn=act_fn,
|
||||
)
|
||||
for _ in range(n_blocks)
|
||||
]
|
||||
)
|
||||
downsample = (
|
||||
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
)
|
||||
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
||||
|
||||
for i in range(num_mid_blocks):
|
||||
input_channel = channels[-1]
|
||||
out_channels = channels[-1]
|
||||
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
dim=output_channel,
|
||||
num_attention_heads=num_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dropout=dropout,
|
||||
activation_fn=act_fn,
|
||||
)
|
||||
for _ in range(n_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
||||
|
||||
channels = channels[::-1] + (channels[0],)
|
||||
for i in range(len(channels) - 1):
|
||||
input_channel = channels[i] * 2
|
||||
output_channel = channels[i + 1]
|
||||
is_last = i == len(channels) - 2
|
||||
resnet = ResnetBlock1D(
|
||||
dim=input_channel,
|
||||
dim_out=output_channel,
|
||||
time_emb_dim=time_embed_dim,
|
||||
)
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
dim=output_channel,
|
||||
num_attention_heads=num_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dropout=dropout,
|
||||
activation_fn=act_fn,
|
||||
)
|
||||
for _ in range(n_blocks)
|
||||
]
|
||||
)
|
||||
upsample = (
|
||||
Upsample1D(output_channel, use_conv_transpose=True)
|
||||
if not is_last
|
||||
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
)
|
||||
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
||||
self.final_block = Block1D(channels[-1], channels[-1])
|
||||
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
||||
self.initialize_weights()
|
||||
|
||||
|
||||
def initialize_weights(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv1d):
|
||||
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.GroupNorm):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
||||
"""Forward pass of the UNet1DConditional model.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): shape (batch_size, in_channels, time)
|
||||
mask (_type_): shape (batch_size, 1, time)
|
||||
t (_type_): shape (batch_size)
|
||||
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
||||
cond (_type_, optional): placeholder for future use. Defaults to None.
|
||||
|
||||
Raises:
|
||||
ValueError: _description_
|
||||
ValueError: _description_
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
|
||||
t = self.time_embeddings(t)
|
||||
t = self.time_mlp(t)
|
||||
|
||||
x = pack([x, mu], "b * t")[0]
|
||||
|
||||
if spks is not None:
|
||||
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
||||
x = pack([x, spks], "b * t")[0]
|
||||
if cond is not None:
|
||||
x = pack([x, cond], "b * t")[0]
|
||||
|
||||
hiddens = []
|
||||
masks = [mask]
|
||||
for resnet, transformer_blocks, downsample in self.down_blocks:
|
||||
mask_down = masks[-1]
|
||||
x = resnet(x, mask_down, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
hiddens.append(x) # Save hidden states for skip connections
|
||||
x = downsample(x * mask_down)
|
||||
masks.append(mask_down[:, :, ::2])
|
||||
masks = masks[:-1]
|
||||
mask_mid = masks[-1]
|
||||
|
||||
for resnet, transformer_blocks in self.mid_blocks:
|
||||
x = resnet(x, mask_mid, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
|
||||
for resnet, transformer_blocks, upsample in self.up_blocks:
|
||||
mask_up = masks.pop()
|
||||
skip = hiddens.pop()
|
||||
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
||||
x = resnet(x, mask_up, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
x = upsample(x * mask_up)
|
||||
x = self.final_block(x, mask_up)
|
||||
output = self.final_proj(x * mask_up)
|
||||
return output * mask
|
||||
Reference in New Issue
Block a user