mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
add cosyvoice code
This commit is contained in:
59
cosyvoice/cli/model.py
Normal file
59
cosyvoice/cli/model.py
Normal file
@@ -0,0 +1,59 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
|
||||
class CosyVoiceModel:
|
||||
|
||||
def __init__(self,
|
||||
llm: torch.nn.Module,
|
||||
flow: torch.nn.Module,
|
||||
hift: torch.nn.Module):
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
self.llm = llm
|
||||
self.flow = flow
|
||||
self.hift = hift
|
||||
|
||||
def load(self, llm_model, flow_model, hift_model):
|
||||
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
||||
self.llm.to(self.device).eval()
|
||||
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
|
||||
self.flow.to(self.device).eval()
|
||||
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
||||
self.hift.to(self.device).eval()
|
||||
|
||||
def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
||||
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
||||
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
||||
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
||||
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)):
|
||||
tts_speech_token = self.llm.inference(text=text.to(self.device),
|
||||
text_len=text_len.to(self.device),
|
||||
prompt_text=prompt_text.to(self.device),
|
||||
prompt_text_len=prompt_text_len.to(self.device),
|
||||
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||
prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
|
||||
embedding=llm_embedding.to(self.device),
|
||||
beam_size=1,
|
||||
sampling=25,
|
||||
max_token_text_ratio=30,
|
||||
min_token_text_ratio=3)
|
||||
tts_mel = self.flow.inference(token=tts_speech_token,
|
||||
token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
||||
prompt_token=flow_prompt_speech_token.to(self.device),
|
||||
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
||||
prompt_feat=prompt_speech_feat.to(self.device),
|
||||
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
||||
embedding=flow_embedding.to(self.device))
|
||||
tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
||||
return {'tts_speech': tts_speech}
|
||||
Reference in New Issue
Block a user