mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
add cosyvoice code
This commit is contained in:
0
cosyvoice/__init__.py
Normal file
0
cosyvoice/__init__.py
Normal file
114
cosyvoice/bin/inference.py
Normal file
114
cosyvoice/bin/inference.py
Normal file
@@ -0,0 +1,114 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
import os
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
import torchaudio
|
||||
from hyperpyyaml import load_hyperpyyaml
|
||||
from tqdm import tqdm
|
||||
from cosyvoice.cli.model import CosyVoiceModel
|
||||
|
||||
from cosyvoice.dataset.dataset import Dataset
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description='inference with your model')
|
||||
parser.add_argument('--config', required=True, help='config file')
|
||||
parser.add_argument('--prompt_data', required=True, help='prompt data file')
|
||||
parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
|
||||
parser.add_argument('--tts_text', required=True, help='tts input file')
|
||||
parser.add_argument('--llm_model', required=True, help='llm model file')
|
||||
parser.add_argument('--flow_model', required=True, help='flow model file')
|
||||
parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
|
||||
parser.add_argument('--gpu',
|
||||
type=int,
|
||||
default=-1,
|
||||
help='gpu id for this rank, -1 for cpu')
|
||||
parser.add_argument('--mode',
|
||||
default='sft',
|
||||
choices=['sft', 'zero_shot'],
|
||||
help='inference mode')
|
||||
parser.add_argument('--result_dir', required=True, help='asr result file')
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s %(levelname)s %(message)s')
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
|
||||
|
||||
# Init cosyvoice models from configs
|
||||
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
||||
device = torch.device('cuda' if use_cuda else 'cpu')
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f)
|
||||
|
||||
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
||||
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
||||
|
||||
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False, tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
||||
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
||||
|
||||
del configs
|
||||
os.makedirs(args.result_dir, exist_ok=True)
|
||||
fn = os.path.join(args.result_dir, 'wav.scp')
|
||||
f = open(fn, 'w')
|
||||
with torch.no_grad():
|
||||
for batch_idx, batch in tqdm(enumerate(test_data_loader)):
|
||||
utts = batch["utts"]
|
||||
assert len(utts) == 1, "inference mode only support batchsize 1"
|
||||
text = batch["text"]
|
||||
text_token = batch["text_token"].to(device)
|
||||
text_token_len = batch["text_token_len"].to(device)
|
||||
tts_text = batch["tts_text"]
|
||||
tts_index = batch["tts_index"]
|
||||
tts_text_token = batch["tts_text_token"].to(device)
|
||||
tts_text_token_len = batch["tts_text_token_len"].to(device)
|
||||
speech_token = batch["speech_token"].to(device)
|
||||
speech_token_len = batch["speech_token_len"].to(device)
|
||||
speech_feat = batch["speech_feat"].to(device)
|
||||
speech_feat_len = batch["speech_feat_len"].to(device)
|
||||
utt_embedding = batch["utt_embedding"].to(device)
|
||||
spk_embedding = batch["spk_embedding"].to(device)
|
||||
if args.mode == 'sft':
|
||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
||||
'llm_embedding': spk_embedding, 'flow_embedding': spk_embedding}
|
||||
else:
|
||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
||||
'prompt_text': text_token, 'prompt_text_len': text_token_len,
|
||||
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
||||
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
||||
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
||||
'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
|
||||
model_output = model.inference(**model_input)
|
||||
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
||||
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
||||
torchaudio.save(tts_fn, model_output['tts_speech'], sample_rate=22050)
|
||||
f.write('{} {}\n'.format(tts_key, tts_fn))
|
||||
f.flush()
|
||||
f.close()
|
||||
logging.info('Result wav.scp saved in {}'.format(fn))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
137
cosyvoice/bin/train.py
Normal file
137
cosyvoice/bin/train.py
Normal file
@@ -0,0 +1,137 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
import argparse
|
||||
import datetime
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import deepspeed
|
||||
|
||||
from hyperpyyaml import load_hyperpyyaml
|
||||
|
||||
from torch.distributed.elastic.multiprocessing.errors import record
|
||||
|
||||
from cosyvoice.utils.executor import Executor
|
||||
from cosyvoice.utils.train_utils import (
|
||||
init_distributed,
|
||||
init_dataset_and_dataloader,
|
||||
init_optimizer_and_scheduler,
|
||||
init_summarywriter, save_model,
|
||||
wrap_cuda_model, check_modify_and_save_config)
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description='training your network')
|
||||
parser.add_argument('--train_engine',
|
||||
default='torch_ddp',
|
||||
choices=['torch_ddp', 'deepspeed'],
|
||||
help='Engine for paralleled training')
|
||||
parser.add_argument('--model', required=True, help='model which will be trained')
|
||||
parser.add_argument('--config', required=True, help='config file')
|
||||
parser.add_argument('--train_data', required=True, help='train data file')
|
||||
parser.add_argument('--cv_data', required=True, help='cv data file')
|
||||
parser.add_argument('--checkpoint', help='checkpoint model')
|
||||
parser.add_argument('--model_dir', required=True, help='save model dir')
|
||||
parser.add_argument('--tensorboard_dir',
|
||||
default='tensorboard',
|
||||
help='tensorboard log dir')
|
||||
parser.add_argument('--ddp.dist_backend',
|
||||
dest='dist_backend',
|
||||
default='nccl',
|
||||
choices=['nccl', 'gloo'],
|
||||
help='distributed backend')
|
||||
parser.add_argument('--num_workers',
|
||||
default=0,
|
||||
type=int,
|
||||
help='num of subprocess workers for reading')
|
||||
parser.add_argument('--prefetch',
|
||||
default=100,
|
||||
type=int,
|
||||
help='prefetch number')
|
||||
parser.add_argument('--pin_memory',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Use pinned memory buffers used for reading')
|
||||
parser.add_argument('--deepspeed.save_states',
|
||||
dest='save_states',
|
||||
default='model_only',
|
||||
choices=['model_only', 'model+optimizer'],
|
||||
help='save model/optimizer states')
|
||||
parser.add_argument('--timeout',
|
||||
default=30,
|
||||
type=int,
|
||||
help='timeout (in seconds) of cosyvoice_join. ' +
|
||||
'30s for aishell & 300s for wenetspeech')
|
||||
parser = deepspeed.add_config_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
@record
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s %(levelname)s %(message)s')
|
||||
|
||||
override_dict = {k: None for k in ['llm', 'flow', 'hift'] if k != args.model}
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides=override_dict)
|
||||
configs['train_conf'].update(vars(args))
|
||||
|
||||
# Init env for ddp
|
||||
init_distributed(args)
|
||||
|
||||
# Get dataset & dataloader
|
||||
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
|
||||
init_dataset_and_dataloader(args, configs)
|
||||
|
||||
# Do some sanity checks and save config to arsg.model_dir
|
||||
configs = check_modify_and_save_config(args, configs)
|
||||
|
||||
# Tensorboard summary
|
||||
writer = init_summarywriter(args)
|
||||
|
||||
# load checkpoint
|
||||
model = configs[args.model]
|
||||
if args.checkpoint is not None:
|
||||
model.load_state_dict(torch.load(args.checkpoint, map_location='cpu'))
|
||||
|
||||
# Dispatch model from cpu to gpu
|
||||
model = wrap_cuda_model(args, model)
|
||||
|
||||
# Get optimizer & scheduler
|
||||
model, optimizer, scheduler = init_optimizer_and_scheduler(args, configs, model)
|
||||
|
||||
# Save init checkpoints
|
||||
info_dict = deepcopy(configs['train_conf'])
|
||||
save_model(model, 'init', info_dict)
|
||||
|
||||
# Get executor
|
||||
executor = Executor()
|
||||
|
||||
# Start training loop
|
||||
for epoch in range(info_dict['max_epoch']):
|
||||
executor.epoch = epoch
|
||||
train_dataset.set_epoch(epoch)
|
||||
dist.barrier()
|
||||
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
|
||||
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join)
|
||||
dist.destroy_process_group(group_join)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
0
cosyvoice/cli/__init__.py
Normal file
0
cosyvoice/cli/__init__.py
Normal file
83
cosyvoice/cli/cosyvoice.py
Normal file
83
cosyvoice/cli/cosyvoice.py
Normal file
@@ -0,0 +1,83 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import torch
|
||||
from hyperpyyaml import load_hyperpyyaml
|
||||
from modelscope import snapshot_download
|
||||
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
||||
from cosyvoice.cli.model import CosyVoiceModel
|
||||
|
||||
class CosyVoice:
|
||||
|
||||
def __init__(self, model_dir):
|
||||
instruct = True if '-Instruct' in model_dir else False
|
||||
self.model_dir = model_dir
|
||||
if not os.path.exists(model_dir):
|
||||
model_dir = snapshot_download(model_dir)
|
||||
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
||||
configs = load_hyperpyyaml(f)
|
||||
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||
configs['feat_extractor'],
|
||||
'{}/campplus.onnx'.format(model_dir),
|
||||
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
||||
'{}/spk2info.pt'.format(model_dir),
|
||||
instruct,
|
||||
configs['allowed_special'])
|
||||
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
||||
self.model.load('{}/llm.pt'.format(model_dir),
|
||||
'{}/flow.pt'.format(model_dir),
|
||||
'{}/hift.pt'.format(model_dir))
|
||||
del configs
|
||||
|
||||
def list_avaliable_spks(self):
|
||||
spks = list(self.frontend.spk2info.keys())
|
||||
return spks
|
||||
|
||||
def inference_sft(self, tts_text, spk_id):
|
||||
tts_speeches = []
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
model_input = self.frontend.frontend_sft(i, spk_id)
|
||||
model_output = self.model.inference(**model_input)
|
||||
tts_speeches.append(model_output['tts_speech'])
|
||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
||||
|
||||
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
||||
prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
||||
tts_speeches = []
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
||||
model_output = self.model.inference(**model_input)
|
||||
tts_speeches.append(model_output['tts_speech'])
|
||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
||||
|
||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k):
|
||||
if self.frontend.instruct is True:
|
||||
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
||||
tts_speeches = []
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
||||
model_output = self.model.inference(**model_input)
|
||||
tts_speeches.append(model_output['tts_speech'])
|
||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
||||
|
||||
def inference_instruct(self, tts_text, spk_id, instruct_text):
|
||||
if self.frontend.instruct is False:
|
||||
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
||||
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
||||
tts_speeches = []
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
||||
model_output = self.model.inference(**model_input)
|
||||
tts_speeches.append(model_output['tts_speech'])
|
||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
||||
146
cosyvoice/cli/frontend.py
Normal file
146
cosyvoice/cli/frontend.py
Normal file
@@ -0,0 +1,146 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from functools import partial
|
||||
import onnxruntime
|
||||
import torch
|
||||
import numpy as np
|
||||
import whisper
|
||||
from typing import Callable
|
||||
import torchaudio.compliance.kaldi as kaldi
|
||||
import torchaudio
|
||||
import os
|
||||
import inflect
|
||||
import ttsfrd
|
||||
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph
|
||||
|
||||
|
||||
class CosyVoiceFrontEnd:
|
||||
|
||||
def __init__(self,
|
||||
get_tokenizer: Callable,
|
||||
feat_extractor: Callable,
|
||||
campplus_model: str,
|
||||
speech_tokenizer_model: str,
|
||||
spk2info: str = '',
|
||||
instruct: bool = False,
|
||||
allowed_special: str = 'all'):
|
||||
self.tokenizer = get_tokenizer()
|
||||
self.feat_extractor = feat_extractor
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
||||
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option, providers=["CUDAExecutionProvider"])
|
||||
if os.path.exists(spk2info):
|
||||
self.spk2info = torch.load(spk2info, map_location=self.device)
|
||||
self.instruct = instruct
|
||||
self.allowed_special = allowed_special
|
||||
self.inflect_parser = inflect.engine()
|
||||
self.frd = ttsfrd.TtsFrontendEngine()
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
assert self.frd.initialize('{}/../../pretrained_models/speech_kantts_ttsfrd/resource'.format(ROOT_DIR)) is True, 'failed to initialize ttsfrd resource'
|
||||
self.frd.set_lang_type('pinyin')
|
||||
self.frd.enable_pinyin_mix(True)
|
||||
self.frd.set_breakmodel_index(1)
|
||||
|
||||
def _extract_text_token(self, text):
|
||||
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
|
||||
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
|
||||
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
|
||||
return text_token, text_token_len
|
||||
|
||||
def _extract_speech_token(self, speech):
|
||||
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
||||
speech_token = self.speech_tokenizer_session.run(None, {self.speech_tokenizer_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
||||
self.speech_tokenizer_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
||||
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
|
||||
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
||||
return speech_token, speech_token_len
|
||||
|
||||
def _extract_spk_embedding(self, speech):
|
||||
feat = kaldi.fbank(speech,
|
||||
num_mel_bins=80,
|
||||
dither=0,
|
||||
sample_frequency=16000)
|
||||
feat = feat - feat.mean(dim=0, keepdim=True)
|
||||
embedding = self.campplus_session.run(None, {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
||||
embedding = torch.tensor([embedding]).to(self.device)
|
||||
return embedding
|
||||
|
||||
def _extract_speech_feat(self, speech):
|
||||
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
|
||||
speech_feat = speech_feat.unsqueeze(dim=0)
|
||||
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
||||
return speech_feat, speech_feat_len
|
||||
|
||||
def text_normalize(self, text, split=True):
|
||||
text = text.strip()
|
||||
if contains_chinese(text):
|
||||
text = self.frd.get_frd_extra_info(text, 'input').replace("\n", "")
|
||||
text = replace_blank(text)
|
||||
text = replace_corner_mark(text)
|
||||
text = text.replace(".", "、")
|
||||
text = text.replace(" - ", ",")
|
||||
text = remove_bracket(text)
|
||||
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
||||
token_min_n=60, merge_len=20,
|
||||
comma_split=False)]
|
||||
else:
|
||||
text = spell_out_number(text, self.inflect_parser)
|
||||
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
||||
token_min_n=60, merge_len=20,
|
||||
comma_split=False)]
|
||||
if split is False:
|
||||
return text
|
||||
return texts
|
||||
|
||||
def frontend_sft(self, tts_text, spk_id):
|
||||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||||
embedding = self.spk2info[spk_id]['embedding']
|
||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||
return model_input
|
||||
|
||||
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
||||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||||
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
||||
prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k)
|
||||
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_22050)
|
||||
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
||||
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
||||
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
||||
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
||||
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
||||
'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||
return model_input
|
||||
|
||||
def frontend_cross_lingual(self, tts_text, prompt_speech_16k):
|
||||
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k)
|
||||
# in cross lingual mode, we remove prompt in llm
|
||||
del model_input['prompt_text']
|
||||
del model_input['prompt_text_len']
|
||||
del model_input['llm_prompt_speech_token']
|
||||
del model_input['llm_prompt_speech_token_len']
|
||||
return model_input
|
||||
|
||||
def frontend_instruct(self, tts_text, spk_id, instruct_text):
|
||||
model_input = self.frontend_sft(tts_text, spk_id)
|
||||
# in instruct mode, we remove spk_embedding in llm due to information leakage
|
||||
del model_input['llm_embedding']
|
||||
instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '<endofprompt>')
|
||||
model_input['prompt_text'] = instruct_text_token
|
||||
model_input['prompt_text_len'] = instruct_text_token_len
|
||||
return model_input
|
||||
59
cosyvoice/cli/model.py
Normal file
59
cosyvoice/cli/model.py
Normal file
@@ -0,0 +1,59 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
|
||||
class CosyVoiceModel:
|
||||
|
||||
def __init__(self,
|
||||
llm: torch.nn.Module,
|
||||
flow: torch.nn.Module,
|
||||
hift: torch.nn.Module):
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
self.llm = llm
|
||||
self.flow = flow
|
||||
self.hift = hift
|
||||
|
||||
def load(self, llm_model, flow_model, hift_model):
|
||||
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
||||
self.llm.to(self.device).eval()
|
||||
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
|
||||
self.flow.to(self.device).eval()
|
||||
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
||||
self.hift.to(self.device).eval()
|
||||
|
||||
def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
||||
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
||||
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
||||
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
||||
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)):
|
||||
tts_speech_token = self.llm.inference(text=text.to(self.device),
|
||||
text_len=text_len.to(self.device),
|
||||
prompt_text=prompt_text.to(self.device),
|
||||
prompt_text_len=prompt_text_len.to(self.device),
|
||||
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||
prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
|
||||
embedding=llm_embedding.to(self.device),
|
||||
beam_size=1,
|
||||
sampling=25,
|
||||
max_token_text_ratio=30,
|
||||
min_token_text_ratio=3)
|
||||
tts_mel = self.flow.inference(token=tts_speech_token,
|
||||
token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
||||
prompt_token=flow_prompt_speech_token.to(self.device),
|
||||
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
||||
prompt_feat=prompt_speech_feat.to(self.device),
|
||||
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
||||
embedding=flow_embedding.to(self.device))
|
||||
tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
||||
return {'tts_speech': tts_speech}
|
||||
0
cosyvoice/dataset/__init__.py
Normal file
0
cosyvoice/dataset/__init__.py
Normal file
160
cosyvoice/dataset/dataset.py
Normal file
160
cosyvoice/dataset/dataset.py
Normal file
@@ -0,0 +1,160 @@
|
||||
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
||||
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
import json
|
||||
import math
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.utils.data import IterableDataset
|
||||
from cosyvoice.utils.file_utils import read_lists, read_json_lists
|
||||
|
||||
|
||||
class Processor(IterableDataset):
|
||||
|
||||
def __init__(self, source, f, *args, **kw):
|
||||
assert callable(f)
|
||||
self.source = source
|
||||
self.f = f
|
||||
self.args = args
|
||||
self.kw = kw
|
||||
|
||||
def set_epoch(self, epoch):
|
||||
self.source.set_epoch(epoch)
|
||||
|
||||
def __iter__(self):
|
||||
""" Return an iterator over the source dataset processed by the
|
||||
given processor.
|
||||
"""
|
||||
assert self.source is not None
|
||||
assert callable(self.f)
|
||||
return self.f(iter(self.source), *self.args, **self.kw)
|
||||
|
||||
def apply(self, f):
|
||||
assert callable(f)
|
||||
return Processor(self, f, *self.args, **self.kw)
|
||||
|
||||
|
||||
class DistributedSampler:
|
||||
|
||||
def __init__(self, shuffle=True, partition=True):
|
||||
self.epoch = -1
|
||||
self.update()
|
||||
self.shuffle = shuffle
|
||||
self.partition = partition
|
||||
|
||||
def update(self):
|
||||
assert dist.is_available()
|
||||
if dist.is_initialized():
|
||||
self.rank = dist.get_rank()
|
||||
self.world_size = dist.get_world_size()
|
||||
else:
|
||||
self.rank = 0
|
||||
self.world_size = 1
|
||||
worker_info = torch.utils.data.get_worker_info()
|
||||
if worker_info is None:
|
||||
self.worker_id = 0
|
||||
self.num_workers = 1
|
||||
else:
|
||||
self.worker_id = worker_info.id
|
||||
self.num_workers = worker_info.num_workers
|
||||
return dict(rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
worker_id=self.worker_id,
|
||||
num_workers=self.num_workers)
|
||||
|
||||
def set_epoch(self, epoch):
|
||||
self.epoch = epoch
|
||||
|
||||
def sample(self, data):
|
||||
""" Sample data according to rank/world_size/num_workers
|
||||
|
||||
Args:
|
||||
data(List): input data list
|
||||
|
||||
Returns:
|
||||
List: data list after sample
|
||||
"""
|
||||
data = list(range(len(data)))
|
||||
# force datalist even
|
||||
if self.partition:
|
||||
if self.shuffle:
|
||||
random.Random(self.epoch).shuffle(data)
|
||||
if len(data) < self.world_size:
|
||||
data = data * math.ceil(self.world_size / len(data))
|
||||
data = data[:self.world_size]
|
||||
data = data[self.rank::self.world_size]
|
||||
if len(data) < self.num_workers:
|
||||
data = data * math.ceil(self.num_workers / len(data))
|
||||
data = data[:self.num_workers]
|
||||
data = data[self.worker_id::self.num_workers]
|
||||
return data
|
||||
|
||||
|
||||
class DataList(IterableDataset):
|
||||
|
||||
def __init__(self, lists, shuffle=True, partition=True):
|
||||
self.lists = lists
|
||||
self.sampler = DistributedSampler(shuffle, partition)
|
||||
|
||||
def set_epoch(self, epoch):
|
||||
self.sampler.set_epoch(epoch)
|
||||
|
||||
def __iter__(self):
|
||||
sampler_info = self.sampler.update()
|
||||
indexes = self.sampler.sample(self.lists)
|
||||
for index in indexes:
|
||||
data = dict(src=self.lists[index])
|
||||
data.update(sampler_info)
|
||||
yield data
|
||||
|
||||
|
||||
def Dataset(data_list_file,
|
||||
data_pipeline,
|
||||
mode='train',
|
||||
shuffle=True,
|
||||
partition=True,
|
||||
tts_file='',
|
||||
prompt_utt2data=''):
|
||||
""" Construct dataset from arguments
|
||||
|
||||
We have two shuffle stage in the Dataset. The first is global
|
||||
shuffle at shards tar/raw file level. The second is global shuffle
|
||||
at training samples level.
|
||||
|
||||
Args:
|
||||
data_type(str): raw/shard
|
||||
tokenizer (BaseTokenizer): tokenizer to tokenize
|
||||
partition(bool): whether to do data partition in terms of rank
|
||||
"""
|
||||
assert mode in ['train', 'inference']
|
||||
lists = read_lists(data_list_file)
|
||||
if mode == 'inference':
|
||||
with open(tts_file) as f:
|
||||
tts_data = json.load(f)
|
||||
utt2lists = read_json_lists(prompt_utt2data)
|
||||
# filter unnecessary file in inference mode
|
||||
lists = list(set([utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists]))
|
||||
dataset = DataList(lists,
|
||||
shuffle=shuffle,
|
||||
partition=partition)
|
||||
if mode == 'inference':
|
||||
# map partial arg tts_data in inference mode
|
||||
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
|
||||
for func in data_pipeline:
|
||||
dataset = Processor(dataset, func, mode=mode)
|
||||
return dataset
|
||||
366
cosyvoice/dataset/processor.py
Normal file
366
cosyvoice/dataset/processor.py
Normal file
@@ -0,0 +1,366 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
import random
|
||||
|
||||
import pyarrow.parquet as pq
|
||||
from io import BytesIO
|
||||
import torch
|
||||
import torchaudio
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
import torch.nn.functional as F
|
||||
|
||||
torchaudio.set_audio_backend('soundfile')
|
||||
torchaudio.utils.sox_utils.set_buffer_size(16500)
|
||||
|
||||
AUDIO_FORMAT_SETS = set(['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'])
|
||||
|
||||
|
||||
def parquet_opener(data, mode='train', tts_data={}):
|
||||
""" Give url or local file, return file descriptor
|
||||
Inplace operation.
|
||||
|
||||
Args:
|
||||
data(Iterable[str]): url or local file list
|
||||
|
||||
Returns:
|
||||
Iterable[{src, stream}]
|
||||
"""
|
||||
for sample in data:
|
||||
assert 'src' in sample
|
||||
url = sample['src']
|
||||
try:
|
||||
df = pq.read_table(url).to_pandas()
|
||||
for i in range(len(df)):
|
||||
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
|
||||
continue
|
||||
sample.update(dict(df.loc[i]))
|
||||
if mode == 'train':
|
||||
# NOTE do not return sample directly, must initialize a new dict
|
||||
yield {**sample}
|
||||
else:
|
||||
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
||||
yield {**sample, 'tts_index': index, 'tts_text': text}
|
||||
except Exception as ex:
|
||||
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
||||
|
||||
def filter(data,
|
||||
max_length=10240,
|
||||
min_length=10,
|
||||
token_max_length=200,
|
||||
token_min_length=1,
|
||||
min_output_input_ratio=0.0005,
|
||||
max_output_input_ratio=1,
|
||||
mode='train'):
|
||||
""" Filter sample according to feature and label length
|
||||
Inplace operation.
|
||||
|
||||
Args::
|
||||
data: Iterable[{key, wav, label, sample_rate}]
|
||||
max_length: drop utterance which is greater than max_length(10ms)
|
||||
min_length: drop utterance which is less than min_length(10ms)
|
||||
token_max_length: drop utterance which is greater than
|
||||
token_max_length, especially when use char unit for
|
||||
english modeling
|
||||
token_min_length: drop utterance which is
|
||||
less than token_max_length
|
||||
min_output_input_ratio: minimal ration of
|
||||
token_length / feats_length(10ms)
|
||||
max_output_input_ratio: maximum ration of
|
||||
token_length / feats_length(10ms)
|
||||
|
||||
Returns:
|
||||
Iterable[{key, wav, label, sample_rate}]
|
||||
"""
|
||||
for sample in data:
|
||||
sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
||||
del sample['audio_data']
|
||||
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
||||
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
||||
if num_frames < min_length:
|
||||
continue
|
||||
if num_frames > max_length:
|
||||
continue
|
||||
if len(sample['text_token']) < token_min_length:
|
||||
continue
|
||||
if len(sample['text_token']) > token_max_length:
|
||||
continue
|
||||
if len(sample['speech_token']) == 0:
|
||||
continue
|
||||
if num_frames != 0:
|
||||
if len(sample['text_token']) / num_frames < min_output_input_ratio:
|
||||
continue
|
||||
if len(sample['text_token']) / num_frames > max_output_input_ratio:
|
||||
continue
|
||||
yield sample
|
||||
|
||||
|
||||
def resample(data, resample_rate=22050, mode='train'):
|
||||
""" Resample data.
|
||||
Inplace operation.
|
||||
|
||||
Args:
|
||||
data: Iterable[{key, wav, label, sample_rate}]
|
||||
resample_rate: target resample rate
|
||||
|
||||
Returns:
|
||||
Iterable[{key, wav, label, sample_rate}]
|
||||
"""
|
||||
for sample in data:
|
||||
assert 'sample_rate' in sample
|
||||
assert 'speech' in sample
|
||||
sample_rate = sample['sample_rate']
|
||||
waveform = sample['speech']
|
||||
if sample_rate != resample_rate:
|
||||
if sample_rate < resample_rate:
|
||||
continue
|
||||
sample['sample_rate'] = resample_rate
|
||||
sample['speech'] = torchaudio.transforms.Resample(
|
||||
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
|
||||
max_val = sample['speech'].abs().max()
|
||||
if max_val > 1:
|
||||
sample['speech'] /= max_val
|
||||
yield sample
|
||||
|
||||
|
||||
def compute_fbank(data,
|
||||
feat_extractor,
|
||||
mode='train'):
|
||||
""" Extract fbank
|
||||
|
||||
Args:
|
||||
data: Iterable[{key, wav, label, sample_rate}]
|
||||
|
||||
Returns:
|
||||
Iterable[{key, feat, label}]
|
||||
"""
|
||||
for sample in data:
|
||||
assert 'sample_rate' in sample
|
||||
assert 'speech' in sample
|
||||
assert 'utt' in sample
|
||||
assert 'text_token' in sample
|
||||
waveform = sample['speech']
|
||||
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
||||
sample['speech_feat'] = mat
|
||||
del sample['speech']
|
||||
yield sample
|
||||
|
||||
|
||||
def parse_embedding(data, normalize, mode='train'):
|
||||
""" Parse utt_embedding/spk_embedding
|
||||
|
||||
Args:
|
||||
data: Iterable[{key, wav, label, sample_rate}]
|
||||
|
||||
Returns:
|
||||
Iterable[{key, feat, label}]
|
||||
"""
|
||||
for sample in data:
|
||||
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
||||
sample['spk_embedding'] = torch.stack([torch.tensor(i, dtype=torch.float32) for i in sample['spk_embedding']], dim=0).mean(dim=0)
|
||||
if normalize:
|
||||
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
|
||||
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
|
||||
yield sample
|
||||
|
||||
|
||||
def tokenize(data, get_tokenizer, allowed_special, mode='train'):
|
||||
""" Decode text to chars or BPE
|
||||
Inplace operation
|
||||
|
||||
Args:
|
||||
data: Iterable[{key, wav, txt, sample_rate}]
|
||||
|
||||
Returns:
|
||||
Iterable[{key, wav, txt, tokens, label, sample_rate}]
|
||||
"""
|
||||
tokenizer = get_tokenizer()
|
||||
for sample in data:
|
||||
assert 'text' in sample
|
||||
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
|
||||
if mode == 'inference':
|
||||
sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
|
||||
yield sample
|
||||
|
||||
|
||||
def shuffle(data, shuffle_size=10000, mode='train'):
|
||||
""" Local shuffle the data
|
||||
|
||||
Args:
|
||||
data: Iterable[{key, feat, label}]
|
||||
shuffle_size: buffer size for shuffle
|
||||
|
||||
Returns:
|
||||
Iterable[{key, feat, label}]
|
||||
"""
|
||||
buf = []
|
||||
for sample in data:
|
||||
buf.append(sample)
|
||||
if len(buf) >= shuffle_size:
|
||||
random.shuffle(buf)
|
||||
for x in buf:
|
||||
yield x
|
||||
buf = []
|
||||
# The sample left over
|
||||
random.shuffle(buf)
|
||||
for x in buf:
|
||||
yield x
|
||||
|
||||
|
||||
def sort(data, sort_size=500, mode='train'):
|
||||
""" Sort the data by feature length.
|
||||
Sort is used after shuffle and before batch, so we can group
|
||||
utts with similar lengths into a batch, and `sort_size` should
|
||||
be less than `shuffle_size`
|
||||
|
||||
Args:
|
||||
data: Iterable[{key, feat, label}]
|
||||
sort_size: buffer size for sort
|
||||
|
||||
Returns:
|
||||
Iterable[{key, feat, label}]
|
||||
"""
|
||||
|
||||
buf = []
|
||||
for sample in data:
|
||||
buf.append(sample)
|
||||
if len(buf) >= sort_size:
|
||||
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
||||
for x in buf:
|
||||
yield x
|
||||
buf = []
|
||||
# The sample left over
|
||||
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
||||
for x in buf:
|
||||
yield x
|
||||
|
||||
|
||||
def static_batch(data, batch_size=16):
|
||||
""" Static batch the data by `batch_size`
|
||||
|
||||
Args:
|
||||
data: Iterable[{key, feat, label}]
|
||||
batch_size: batch size
|
||||
|
||||
Returns:
|
||||
Iterable[List[{key, feat, label}]]
|
||||
"""
|
||||
buf = []
|
||||
for sample in data:
|
||||
buf.append(sample)
|
||||
if len(buf) >= batch_size:
|
||||
yield buf
|
||||
buf = []
|
||||
if len(buf) > 0:
|
||||
yield buf
|
||||
|
||||
|
||||
def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
|
||||
""" Dynamic batch the data until the total frames in batch
|
||||
reach `max_frames_in_batch`
|
||||
|
||||
Args:
|
||||
data: Iterable[{key, feat, label}]
|
||||
max_frames_in_batch: max_frames in one batch
|
||||
|
||||
Returns:
|
||||
Iterable[List[{key, feat, label}]]
|
||||
"""
|
||||
buf = []
|
||||
longest_frames = 0
|
||||
for sample in data:
|
||||
assert 'speech_feat' in sample
|
||||
assert isinstance(sample['speech_feat'], torch.Tensor)
|
||||
new_sample_frames = sample['speech_feat'].size(0)
|
||||
longest_frames = max(longest_frames, new_sample_frames)
|
||||
frames_after_padding = longest_frames * (len(buf) + 1)
|
||||
if frames_after_padding > max_frames_in_batch:
|
||||
yield buf
|
||||
buf = [sample]
|
||||
longest_frames = new_sample_frames
|
||||
else:
|
||||
buf.append(sample)
|
||||
if len(buf) > 0:
|
||||
yield buf
|
||||
|
||||
|
||||
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
|
||||
""" Wrapper for static/dynamic batch
|
||||
"""
|
||||
if mode == 'inference':
|
||||
return static_batch(data, 1)
|
||||
else:
|
||||
if batch_type == 'static':
|
||||
return static_batch(data, batch_size)
|
||||
elif batch_type == 'dynamic':
|
||||
return dynamic_batch(data, max_frames_in_batch)
|
||||
else:
|
||||
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
||||
|
||||
|
||||
def padding(data, mode='train'):
|
||||
""" Padding the data into training data
|
||||
|
||||
Args:
|
||||
data: Iterable[List[{key, feat, label}]]
|
||||
|
||||
Returns:
|
||||
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
||||
"""
|
||||
for sample in data:
|
||||
assert isinstance(sample, list)
|
||||
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
|
||||
dtype=torch.int32)
|
||||
order = torch.argsort(speech_feat_len, descending=True)
|
||||
|
||||
utts = [sample[i]['utt'] for i in order]
|
||||
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
||||
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
||||
speech_token = pad_sequence(speech_token,
|
||||
batch_first=True,
|
||||
padding_value=0)
|
||||
speech_feat = [sample[i]['speech_feat'] for i in order]
|
||||
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
|
||||
speech_feat = pad_sequence(speech_feat,
|
||||
batch_first=True,
|
||||
padding_value=0)
|
||||
text = [sample[i]['text'] for i in order]
|
||||
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
|
||||
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
|
||||
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
|
||||
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
|
||||
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
||||
batch = {
|
||||
"utts": utts,
|
||||
"speech_token": speech_token,
|
||||
"speech_token_len": speech_token_len,
|
||||
"speech_feat": speech_feat,
|
||||
"speech_feat_len": speech_feat_len,
|
||||
"text": text,
|
||||
"text_token": text_token,
|
||||
"text_token_len": text_token_len,
|
||||
"utt_embedding": utt_embedding,
|
||||
"spk_embedding": spk_embedding,
|
||||
}
|
||||
if mode == 'inference':
|
||||
tts_text = [sample[i]['tts_text'] for i in order]
|
||||
tts_index = [sample[i]['tts_index'] for i in order]
|
||||
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
|
||||
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
|
||||
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
|
||||
batch.update({'tts_text': tts_text,
|
||||
'tts_index': tts_index,
|
||||
'tts_text_token': tts_text_token,
|
||||
'tts_text_token_len': tts_text_token_len})
|
||||
yield batch
|
||||
222
cosyvoice/flow/decoder.py
Executable file
222
cosyvoice/flow/decoder.py
Executable file
@@ -0,0 +1,222 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import pack, rearrange, repeat
|
||||
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
||||
from matcha.models.components.transformer import BasicTransformerBlock
|
||||
|
||||
|
||||
class ConditionalDecoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
channels=(256, 256),
|
||||
dropout=0.05,
|
||||
attention_head_dim=64,
|
||||
n_blocks=1,
|
||||
num_mid_blocks=2,
|
||||
num_heads=4,
|
||||
act_fn="snake",
|
||||
):
|
||||
"""
|
||||
This decoder requires an input with the same shape of the target. So, if your text content
|
||||
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
||||
"""
|
||||
super().__init__()
|
||||
channels = tuple(channels)
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
|
||||
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
||||
time_embed_dim = channels[0] * 4
|
||||
self.time_mlp = TimestepEmbedding(
|
||||
in_channels=in_channels,
|
||||
time_embed_dim=time_embed_dim,
|
||||
act_fn="silu",
|
||||
)
|
||||
self.down_blocks = nn.ModuleList([])
|
||||
self.mid_blocks = nn.ModuleList([])
|
||||
self.up_blocks = nn.ModuleList([])
|
||||
|
||||
output_channel = in_channels
|
||||
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
||||
input_channel = output_channel
|
||||
output_channel = channels[i]
|
||||
is_last = i == len(channels) - 1
|
||||
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
dim=output_channel,
|
||||
num_attention_heads=num_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dropout=dropout,
|
||||
activation_fn=act_fn,
|
||||
)
|
||||
for _ in range(n_blocks)
|
||||
]
|
||||
)
|
||||
downsample = (
|
||||
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
)
|
||||
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
||||
|
||||
for i in range(num_mid_blocks):
|
||||
input_channel = channels[-1]
|
||||
out_channels = channels[-1]
|
||||
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
dim=output_channel,
|
||||
num_attention_heads=num_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dropout=dropout,
|
||||
activation_fn=act_fn,
|
||||
)
|
||||
for _ in range(n_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
||||
|
||||
channels = channels[::-1] + (channels[0],)
|
||||
for i in range(len(channels) - 1):
|
||||
input_channel = channels[i] * 2
|
||||
output_channel = channels[i + 1]
|
||||
is_last = i == len(channels) - 2
|
||||
resnet = ResnetBlock1D(
|
||||
dim=input_channel,
|
||||
dim_out=output_channel,
|
||||
time_emb_dim=time_embed_dim,
|
||||
)
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
dim=output_channel,
|
||||
num_attention_heads=num_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dropout=dropout,
|
||||
activation_fn=act_fn,
|
||||
)
|
||||
for _ in range(n_blocks)
|
||||
]
|
||||
)
|
||||
upsample = (
|
||||
Upsample1D(output_channel, use_conv_transpose=True)
|
||||
if not is_last
|
||||
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
)
|
||||
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
||||
self.final_block = Block1D(channels[-1], channels[-1])
|
||||
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
||||
self.initialize_weights()
|
||||
|
||||
|
||||
def initialize_weights(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv1d):
|
||||
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.GroupNorm):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
||||
"""Forward pass of the UNet1DConditional model.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): shape (batch_size, in_channels, time)
|
||||
mask (_type_): shape (batch_size, 1, time)
|
||||
t (_type_): shape (batch_size)
|
||||
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
||||
cond (_type_, optional): placeholder for future use. Defaults to None.
|
||||
|
||||
Raises:
|
||||
ValueError: _description_
|
||||
ValueError: _description_
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
|
||||
t = self.time_embeddings(t)
|
||||
t = self.time_mlp(t)
|
||||
|
||||
x = pack([x, mu], "b * t")[0]
|
||||
|
||||
if spks is not None:
|
||||
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
||||
x = pack([x, spks], "b * t")[0]
|
||||
if cond is not None:
|
||||
x = pack([x, cond], "b * t")[0]
|
||||
|
||||
hiddens = []
|
||||
masks = [mask]
|
||||
for resnet, transformer_blocks, downsample in self.down_blocks:
|
||||
mask_down = masks[-1]
|
||||
x = resnet(x, mask_down, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
hiddens.append(x) # Save hidden states for skip connections
|
||||
x = downsample(x * mask_down)
|
||||
masks.append(mask_down[:, :, ::2])
|
||||
masks = masks[:-1]
|
||||
mask_mid = masks[-1]
|
||||
|
||||
for resnet, transformer_blocks in self.mid_blocks:
|
||||
x = resnet(x, mask_mid, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
|
||||
for resnet, transformer_blocks, upsample in self.up_blocks:
|
||||
mask_up = masks.pop()
|
||||
skip = hiddens.pop()
|
||||
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
||||
x = resnet(x, mask_up, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
x = upsample(x * mask_up)
|
||||
x = self.final_block(x, mask_up)
|
||||
output = self.final_proj(x * mask_up)
|
||||
return output * mask
|
||||
135
cosyvoice/flow/flow.py
Normal file
135
cosyvoice/flow/flow.py
Normal file
@@ -0,0 +1,135 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
from typing import Dict, Optional
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from omegaconf import DictConfig
|
||||
from cosyvoice.utils.mask import make_pad_mask
|
||||
|
||||
|
||||
class MaskedDiffWithXvec(torch.nn.Module):
|
||||
def __init__(self,
|
||||
input_size: int = 512,
|
||||
output_size: int = 80,
|
||||
spk_embed_dim: int = 192,
|
||||
output_type: str = "mel",
|
||||
vocab_size: int = 4096,
|
||||
input_frame_rate: int = 50,
|
||||
only_mask_loss: bool = True,
|
||||
encoder: torch.nn.Module = None,
|
||||
length_regulator: torch.nn.Module = None,
|
||||
decoder: torch.nn.Module = None,
|
||||
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1, 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine', 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}), 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64, 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
||||
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050, 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
self.output_size = output_size
|
||||
self.decoder_conf = decoder_conf
|
||||
self.mel_feat_conf = mel_feat_conf
|
||||
self.vocab_size = vocab_size
|
||||
self.output_type = output_type
|
||||
self.input_frame_rate = input_frame_rate
|
||||
logging.info(f"input frame rate={self.input_frame_rate}")
|
||||
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
||||
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
||||
self.encoder = encoder
|
||||
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
||||
self.decoder = decoder
|
||||
self.length_regulator = length_regulator
|
||||
self.only_mask_loss = only_mask_loss
|
||||
|
||||
def forward(
|
||||
self,
|
||||
batch: dict,
|
||||
device: torch.device,
|
||||
) -> Dict[str, Optional[torch.Tensor]]:
|
||||
token = batch['speech_token'].to(device)
|
||||
token_len = batch['speech_token_len'].to(device)
|
||||
feat = batch['speech_feat'].to(device)
|
||||
feat_len = batch['speech_feat_len'].to(device)
|
||||
embedding = batch['utt_embedding'].to(device)
|
||||
|
||||
# xvec projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
|
||||
# concat text and prompt_text
|
||||
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||
|
||||
# text encode
|
||||
h, h_lengths = self.encoder(token, token_len)
|
||||
h = self.encoder_proj(h)
|
||||
h, h_lengths = self.length_regulator(h, feat_len)
|
||||
|
||||
# get conditions
|
||||
conds = torch.zeros(feat.shape, device=token.device)
|
||||
conds = conds.transpose(1, 2)
|
||||
|
||||
mask = (~make_pad_mask(feat_len)).to(h)
|
||||
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
||||
loss, _ = self.decoder.compute_loss(
|
||||
feat.transpose(1, 2).contiguous(),
|
||||
mask.unsqueeze(1),
|
||||
h.transpose(1, 2).contiguous(),
|
||||
embedding,
|
||||
cond=conds
|
||||
)
|
||||
return {'loss': loss}
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(self,
|
||||
token,
|
||||
token_len,
|
||||
prompt_token,
|
||||
prompt_token_len,
|
||||
prompt_feat,
|
||||
prompt_feat_len,
|
||||
embedding):
|
||||
assert token.shape[0] == 1
|
||||
# xvec projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
|
||||
# concat text and prompt_text
|
||||
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
||||
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding)
|
||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||
|
||||
# text encode
|
||||
h, h_lengths = self.encoder(token, token_len)
|
||||
h = self.encoder_proj(h)
|
||||
feat_len = (token_len / 50 * 22050 / 256).int()
|
||||
h, h_lengths = self.length_regulator(h, feat_len)
|
||||
|
||||
# get conditions
|
||||
conds = torch.zeros([1, feat_len.max().item(), self.output_size], device=token.device)
|
||||
if prompt_feat.shape[1] != 0:
|
||||
for i, j in enumerate(prompt_feat_len):
|
||||
conds[i, :j] = prompt_feat[i]
|
||||
conds = conds.transpose(1, 2)
|
||||
|
||||
mask = (~make_pad_mask(feat_len)).to(h)
|
||||
feat = self.decoder(
|
||||
mu=h.transpose(1, 2).contiguous(),
|
||||
mask=mask.unsqueeze(1),
|
||||
spks=embedding,
|
||||
cond=conds,
|
||||
n_timesteps=10
|
||||
)
|
||||
if prompt_feat.shape[1] != 0:
|
||||
feat = feat[:, :, prompt_feat.shape[1]:]
|
||||
return feat
|
||||
131
cosyvoice/flow/flow_matching.py
Executable file
131
cosyvoice/flow/flow_matching.py
Executable file
@@ -0,0 +1,131 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from matcha.models.components.flow_matching import BASECFM
|
||||
|
||||
class ConditionalCFM(BASECFM):
|
||||
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
||||
super().__init__(
|
||||
n_feats=in_channels,
|
||||
cfm_params=cfm_params,
|
||||
n_spks=n_spks,
|
||||
spk_emb_dim=spk_emb_dim,
|
||||
)
|
||||
self.t_scheduler = cfm_params.t_scheduler
|
||||
self.training_cfg_rate = cfm_params.training_cfg_rate
|
||||
self.inference_cfg_rate = cfm_params.inference_cfg_rate
|
||||
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
||||
# Just change the architecture of the estimator here
|
||||
self.estimator = estimator
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
||||
"""Forward diffusion
|
||||
|
||||
Args:
|
||||
mu (torch.Tensor): output of encoder
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
mask (torch.Tensor): output_mask
|
||||
shape: (batch_size, 1, mel_timesteps)
|
||||
n_timesteps (int): number of diffusion steps
|
||||
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
||||
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||
shape: (batch_size, spk_emb_dim)
|
||||
cond: Not used but kept for future purposes
|
||||
|
||||
Returns:
|
||||
sample: generated mel-spectrogram
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
"""
|
||||
z = torch.randn_like(mu) * temperature
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
||||
if self.t_scheduler == 'cosine':
|
||||
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
||||
|
||||
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
||||
"""
|
||||
Fixed euler solver for ODEs.
|
||||
Args:
|
||||
x (torch.Tensor): random noise
|
||||
t_span (torch.Tensor): n_timesteps interpolated
|
||||
shape: (n_timesteps + 1,)
|
||||
mu (torch.Tensor): output of encoder
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
mask (torch.Tensor): output_mask
|
||||
shape: (batch_size, 1, mel_timesteps)
|
||||
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||
shape: (batch_size, spk_emb_dim)
|
||||
cond: Not used but kept for future purposes
|
||||
"""
|
||||
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||
|
||||
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||||
# Or in future might add like a return_all_steps flag
|
||||
sol = []
|
||||
|
||||
for step in range(1, len(t_span)):
|
||||
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
||||
# Classifier-Free Guidance inference introduced in VoiceBox
|
||||
if self.inference_cfg_rate > 0:
|
||||
cfg_dphi_dt = self.estimator(
|
||||
x, mask,
|
||||
torch.zeros_like(mu), t,
|
||||
torch.zeros_like(spks) if spks is not None else None,
|
||||
torch.zeros_like(cond)
|
||||
)
|
||||
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt -
|
||||
self.inference_cfg_rate * cfg_dphi_dt)
|
||||
x = x + dt * dphi_dt
|
||||
t = t + dt
|
||||
sol.append(x)
|
||||
if step < len(t_span) - 1:
|
||||
dt = t_span[step + 1] - t
|
||||
|
||||
return sol[-1]
|
||||
|
||||
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
||||
"""Computes diffusion loss
|
||||
|
||||
Args:
|
||||
x1 (torch.Tensor): Target
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
mask (torch.Tensor): target mask
|
||||
shape: (batch_size, 1, mel_timesteps)
|
||||
mu (torch.Tensor): output of encoder
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
||||
shape: (batch_size, spk_emb_dim)
|
||||
|
||||
Returns:
|
||||
loss: conditional flow matching loss
|
||||
y: conditional flow
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
"""
|
||||
b, _, t = mu.shape
|
||||
|
||||
# random timestep
|
||||
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
|
||||
if self.t_scheduler == 'cosine':
|
||||
t = 1 - torch.cos(t * 0.5 * torch.pi)
|
||||
# sample noise p(x_0)
|
||||
z = torch.randn_like(x1)
|
||||
|
||||
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
||||
u = x1 - (1 - self.sigma_min) * z
|
||||
|
||||
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
||||
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
||||
return loss, y
|
||||
49
cosyvoice/flow/length_regulator.py
Executable file
49
cosyvoice/flow/length_regulator.py
Executable file
@@ -0,0 +1,49 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Tuple
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from cosyvoice.utils.mask import make_pad_mask
|
||||
|
||||
|
||||
class InterpolateRegulator(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
sampling_ratios: Tuple,
|
||||
out_channels: int = None,
|
||||
groups: int = 1,
|
||||
):
|
||||
super().__init__()
|
||||
self.sampling_ratios = sampling_ratios
|
||||
out_channels = out_channels or channels
|
||||
model = nn.ModuleList([])
|
||||
if len(sampling_ratios) > 0:
|
||||
for _ in sampling_ratios:
|
||||
module = nn.Conv1d(channels, channels, 3, 1, 1)
|
||||
norm = nn.GroupNorm(groups, channels)
|
||||
act = nn.Mish()
|
||||
model.extend([module, norm, act])
|
||||
model.append(
|
||||
nn.Conv1d(channels, out_channels, 1, 1)
|
||||
)
|
||||
self.model = nn.Sequential(*model)
|
||||
|
||||
def forward(self, x, ylens=None):
|
||||
# x in (B, T, D)
|
||||
mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
|
||||
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
|
||||
out = self.model(x).transpose(1, 2).contiguous()
|
||||
olens = ylens
|
||||
return out * mask, olens
|
||||
55
cosyvoice/hifigan/f0_predictor.py
Executable file
55
cosyvoice/hifigan/f0_predictor.py
Executable file
@@ -0,0 +1,55 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
|
||||
class ConvRNNF0Predictor(nn.Module):
|
||||
def __init__(self,
|
||||
num_class: int = 1,
|
||||
in_channels: int = 80,
|
||||
cond_channels: int = 512
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.num_class = num_class
|
||||
self.condnet = nn.Sequential(
|
||||
weight_norm(
|
||||
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
|
||||
),
|
||||
nn.ELU(),
|
||||
weight_norm(
|
||||
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
||||
),
|
||||
nn.ELU(),
|
||||
weight_norm(
|
||||
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
||||
),
|
||||
nn.ELU(),
|
||||
weight_norm(
|
||||
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
||||
),
|
||||
nn.ELU(),
|
||||
weight_norm(
|
||||
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
||||
),
|
||||
nn.ELU(),
|
||||
)
|
||||
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.condnet(x)
|
||||
x = x.transpose(1, 2)
|
||||
return torch.abs(self.classifier(x).squeeze(-1))
|
||||
391
cosyvoice/hifigan/generator.py
Normal file
391
cosyvoice/hifigan/generator.py
Normal file
@@ -0,0 +1,391 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""HIFI-GAN"""
|
||||
|
||||
import typing as tp
|
||||
import numpy as np
|
||||
from scipy.signal import get_window
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import Conv1d
|
||||
from torch.nn import ConvTranspose1d
|
||||
from torch.nn.utils import remove_weight_norm
|
||||
from torch.nn.utils import weight_norm
|
||||
from torch.distributions.uniform import Uniform
|
||||
|
||||
from cosyvoice.transformer.activation import Snake
|
||||
from academicodec.utils import get_padding
|
||||
from academicodec.utils import init_weights
|
||||
|
||||
|
||||
"""hifigan based generator implementation.
|
||||
|
||||
This code is modified from https://github.com/jik876/hifi-gan
|
||||
,https://github.com/kan-bayashi/ParallelWaveGAN and
|
||||
https://github.com/NVIDIA/BigVGAN
|
||||
|
||||
"""
|
||||
class ResBlock(torch.nn.Module):
|
||||
"""Residual block module in HiFiGAN/BigVGAN."""
|
||||
def __init__(
|
||||
self,
|
||||
channels: int = 512,
|
||||
kernel_size: int = 3,
|
||||
dilations: tp.List[int] = [1, 3, 5],
|
||||
):
|
||||
super(ResBlock, self).__init__()
|
||||
self.convs1 = nn.ModuleList()
|
||||
self.convs2 = nn.ModuleList()
|
||||
|
||||
for dilation in dilations:
|
||||
self.convs1.append(
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation,
|
||||
padding=get_padding(kernel_size, dilation)
|
||||
)
|
||||
)
|
||||
)
|
||||
self.convs2.append(
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1)
|
||||
)
|
||||
)
|
||||
)
|
||||
self.convs1.apply(init_weights)
|
||||
self.convs2.apply(init_weights)
|
||||
self.activations1 = nn.ModuleList([
|
||||
Snake(channels, alpha_logscale=False)
|
||||
for _ in range(len(self.convs1))
|
||||
])
|
||||
self.activations2 = nn.ModuleList([
|
||||
Snake(channels, alpha_logscale=False)
|
||||
for _ in range(len(self.convs2))
|
||||
])
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
for idx in range(len(self.convs1)):
|
||||
xt = self.activations1[idx](x)
|
||||
xt = self.convs1[idx](xt)
|
||||
xt = self.activations2[idx](xt)
|
||||
xt = self.convs2[idx](xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for idx in range(len(self.convs1)):
|
||||
remove_weight_norm(self.convs1[idx])
|
||||
remove_weight_norm(self.convs2[idx])
|
||||
|
||||
class SineGen(torch.nn.Module):
|
||||
""" Definition of sine generator
|
||||
SineGen(samp_rate, harmonic_num = 0,
|
||||
sine_amp = 0.1, noise_std = 0.003,
|
||||
voiced_threshold = 0,
|
||||
flag_for_pulse=False)
|
||||
samp_rate: sampling rate in Hz
|
||||
harmonic_num: number of harmonic overtones (default 0)
|
||||
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
||||
noise_std: std of Gaussian noise (default 0.003)
|
||||
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
||||
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
||||
Note: when flag_for_pulse is True, the first time step of a voiced
|
||||
segment is always sin(np.pi) or cos(0)
|
||||
"""
|
||||
|
||||
def __init__(self, samp_rate, harmonic_num=0,
|
||||
sine_amp=0.1, noise_std=0.003,
|
||||
voiced_threshold=0):
|
||||
super(SineGen, self).__init__()
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = noise_std
|
||||
self.harmonic_num = harmonic_num
|
||||
self.sampling_rate = samp_rate
|
||||
self.voiced_threshold = voiced_threshold
|
||||
|
||||
def _f02uv(self, f0):
|
||||
# generate uv signal
|
||||
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
||||
return uv
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, f0):
|
||||
"""
|
||||
:param f0: [B, 1, sample_len], Hz
|
||||
:return: [B, 1, sample_len]
|
||||
"""
|
||||
|
||||
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
|
||||
for i in range(self.harmonic_num + 1):
|
||||
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
|
||||
|
||||
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
|
||||
u_dist = Uniform(low=-np.pi, high=np.pi)
|
||||
phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
|
||||
phase_vec[:, 0, :] = 0
|
||||
|
||||
# generate sine waveforms
|
||||
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
|
||||
|
||||
# generate uv signal
|
||||
uv = self._f02uv(f0)
|
||||
|
||||
# noise: for unvoiced should be similar to sine_amp
|
||||
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
||||
# . for voiced regions is self.noise_std
|
||||
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||
noise = noise_amp * torch.randn_like(sine_waves)
|
||||
|
||||
# first: set the unvoiced part to 0 by uv
|
||||
# then: additive noise
|
||||
sine_waves = sine_waves * uv + noise
|
||||
return sine_waves, uv, noise
|
||||
|
||||
|
||||
class SourceModuleHnNSF(torch.nn.Module):
|
||||
""" SourceModule for hn-nsf
|
||||
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0)
|
||||
sampling_rate: sampling_rate in Hz
|
||||
harmonic_num: number of harmonic above F0 (default: 0)
|
||||
sine_amp: amplitude of sine source signal (default: 0.1)
|
||||
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
||||
note that amplitude of noise in unvoiced is decided
|
||||
by sine_amp
|
||||
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||
F0_sampled (batchsize, length, 1)
|
||||
Sine_source (batchsize, length, 1)
|
||||
noise_source (batchsize, length 1)
|
||||
uv (batchsize, length, 1)
|
||||
"""
|
||||
|
||||
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0):
|
||||
super(SourceModuleHnNSF, self).__init__()
|
||||
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = add_noise_std
|
||||
|
||||
# to produce sine waveforms
|
||||
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
||||
sine_amp, add_noise_std, voiced_threshod)
|
||||
|
||||
# to merge source harmonics into a single excitation
|
||||
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
||||
self.l_tanh = torch.nn.Tanh()
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||
F0_sampled (batchsize, length, 1)
|
||||
Sine_source (batchsize, length, 1)
|
||||
noise_source (batchsize, length 1)
|
||||
"""
|
||||
# source for harmonic branch
|
||||
with torch.no_grad():
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
|
||||
sine_wavs = sine_wavs.transpose(1, 2)
|
||||
uv = uv.transpose(1, 2)
|
||||
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
||||
|
||||
# source for noise branch, in the same shape as uv
|
||||
noise = torch.randn_like(uv) * self.sine_amp / 3
|
||||
return sine_merge, noise, uv
|
||||
|
||||
|
||||
class HiFTGenerator(nn.Module):
|
||||
"""
|
||||
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
||||
https://arxiv.org/abs/2309.09493
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int = 80,
|
||||
base_channels: int = 512,
|
||||
nb_harmonics: int = 8,
|
||||
sampling_rate: int = 22050,
|
||||
nsf_alpha: float = 0.1,
|
||||
nsf_sigma: float = 0.003,
|
||||
nsf_voiced_threshold: float = 10,
|
||||
upsample_rates: tp.List[int] = [8, 8],
|
||||
upsample_kernel_sizes: tp.List[int] = [16, 16],
|
||||
istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
||||
resblock_kernel_sizes: tp.List[int] = [3, 7, 11],
|
||||
resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
source_resblock_kernel_sizes: tp.List[int] = [7, 11],
|
||||
source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]],
|
||||
lrelu_slope: float = 0.1,
|
||||
audio_limit: float = 0.99,
|
||||
f0_predictor: torch.nn.Module = None,
|
||||
):
|
||||
super(HiFTGenerator, self).__init__()
|
||||
|
||||
self.out_channels = 1
|
||||
self.nb_harmonics = nb_harmonics
|
||||
self.sampling_rate = sampling_rate
|
||||
self.istft_params = istft_params
|
||||
self.lrelu_slope = lrelu_slope
|
||||
self.audio_limit = audio_limit
|
||||
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
self.num_upsamples = len(upsample_rates)
|
||||
self.m_source = SourceModuleHnNSF(
|
||||
sampling_rate=sampling_rate,
|
||||
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
||||
harmonic_num=nb_harmonics,
|
||||
sine_amp=nsf_alpha,
|
||||
add_noise_std=nsf_sigma,
|
||||
voiced_threshod=nsf_voiced_threshold)
|
||||
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
|
||||
|
||||
self.conv_pre = weight_norm(
|
||||
Conv1d(in_channels, base_channels, 7, 1, padding=3)
|
||||
)
|
||||
|
||||
# Up
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||||
self.ups.append(
|
||||
weight_norm(
|
||||
ConvTranspose1d(
|
||||
base_channels // (2**i),
|
||||
base_channels // (2**(i + 1)),
|
||||
k,
|
||||
u,
|
||||
padding=(k - u) // 2,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
# Down
|
||||
self.source_downs = nn.ModuleList()
|
||||
self.source_resblocks = nn.ModuleList()
|
||||
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
||||
downsample_cum_rates = np.cumprod(downsample_rates)
|
||||
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes,
|
||||
source_resblock_dilation_sizes)):
|
||||
if u == 1:
|
||||
self.source_downs.append(
|
||||
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
||||
)
|
||||
else:
|
||||
self.source_downs.append(
|
||||
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
|
||||
)
|
||||
|
||||
self.source_resblocks.append(
|
||||
ResBlock(base_channels // (2 ** (i + 1)), k, d)
|
||||
)
|
||||
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = base_channels // (2**(i + 1))
|
||||
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
||||
self.resblocks.append(ResBlock(ch, k, d))
|
||||
|
||||
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
||||
self.ups.apply(init_weights)
|
||||
self.conv_post.apply(init_weights)
|
||||
self.reflection_pad = nn.ReflectionPad1d((1, 0))
|
||||
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
||||
self.f0_predictor = f0_predictor
|
||||
|
||||
def _f02source(self, f0: torch.Tensor) -> torch.Tensor:
|
||||
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
||||
|
||||
har_source, _, _ = self.m_source(f0)
|
||||
return har_source.transpose(1, 2)
|
||||
|
||||
def _stft(self, x):
|
||||
spec = torch.stft(
|
||||
x,
|
||||
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
|
||||
return_complex=True)
|
||||
spec = torch.view_as_real(spec) # [B, F, TT, 2]
|
||||
return spec[..., 0], spec[..., 1]
|
||||
|
||||
def _istft(self, magnitude, phase):
|
||||
magnitude = torch.clip(magnitude, max=1e2)
|
||||
real = magnitude * torch.cos(phase)
|
||||
img = magnitude * torch.sin(phase)
|
||||
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
||||
return inverse_transform
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
f0 = self.f0_predictor(x)
|
||||
s = self._f02source(f0)
|
||||
|
||||
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
||||
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
||||
|
||||
x = self.conv_pre(x)
|
||||
for i in range(self.num_upsamples):
|
||||
x = F.leaky_relu(x, self.lrelu_slope)
|
||||
x = self.ups[i](x)
|
||||
|
||||
if i == self.num_upsamples - 1:
|
||||
x = self.reflection_pad(x)
|
||||
|
||||
# fusion
|
||||
si = self.source_downs[i](s_stft)
|
||||
si = self.source_resblocks[i](si)
|
||||
x = x + si
|
||||
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||
else:
|
||||
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||
x = xs / self.num_kernels
|
||||
|
||||
x = F.leaky_relu(x)
|
||||
x = self.conv_post(x)
|
||||
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
|
||||
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
|
||||
|
||||
x = self._istft(magnitude, phase)
|
||||
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
print('Removing weight norm...')
|
||||
for l in self.ups:
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
self.source_module.remove_weight_norm()
|
||||
for l in self.source_downs:
|
||||
remove_weight_norm(l)
|
||||
for l in self.source_resblocks:
|
||||
l.remove_weight_norm()
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(self, mel: torch.Tensor) -> torch.Tensor:
|
||||
return self.forward(x=mel)
|
||||
206
cosyvoice/llm/llm.py
Normal file
206
cosyvoice/llm/llm.py
Normal file
@@ -0,0 +1,206 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Dict, Optional, Union
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
||||
from cosyvoice.utils.common import IGNORE_ID
|
||||
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
||||
from cosyvoice.utils.common import th_accuracy
|
||||
|
||||
|
||||
class TransformerLM(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
text_encoder_input_size: int,
|
||||
llm_input_size: int,
|
||||
llm_output_size: int,
|
||||
text_token_size: int,
|
||||
speech_token_size: int,
|
||||
text_encoder: torch.nn.Module,
|
||||
llm: torch.nn.Module,
|
||||
length_normalized_loss: bool = True,
|
||||
lsm_weight: float = 0.0,
|
||||
spk_embed_dim: int = 192,
|
||||
):
|
||||
super().__init__()
|
||||
self.llm_input_size = llm_input_size
|
||||
self.speech_token_size = speech_token_size
|
||||
# 1. build text token inputs related modules
|
||||
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
|
||||
self.text_encoder = text_encoder
|
||||
self.text_encoder_affine_layer = nn.Linear(
|
||||
self.text_encoder.output_size(),
|
||||
llm_input_size
|
||||
)
|
||||
|
||||
# 2. build speech token language model related modules
|
||||
self.sos_eos = 0
|
||||
self.task_id = 1
|
||||
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
||||
self.llm = llm
|
||||
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
|
||||
self.criterion_ce = LabelSmoothingLoss(
|
||||
size=speech_token_size + 1,
|
||||
padding_idx=IGNORE_ID,
|
||||
smoothing=lsm_weight,
|
||||
normalize_length=length_normalized_loss,
|
||||
)
|
||||
|
||||
# 3. [Optional] build speech token related modules
|
||||
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
|
||||
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
|
||||
|
||||
def encode(
|
||||
self,
|
||||
text: torch.Tensor,
|
||||
text_lengths: torch.Tensor,
|
||||
):
|
||||
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
|
||||
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
|
||||
encoder_out = self.text_encoder_affine_layer(encoder_out)
|
||||
return encoder_out, encoder_out_lens
|
||||
|
||||
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
||||
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
||||
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
||||
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0) for i in range(len(text_token))]
|
||||
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
||||
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
||||
return lm_input, lm_input_len
|
||||
|
||||
def forward(
|
||||
self,
|
||||
batch: dict,
|
||||
device: torch.device,
|
||||
) -> Dict[str, Optional[torch.Tensor]]:
|
||||
"""
|
||||
Args:
|
||||
text: (B, L, D)
|
||||
text_lengths: (B,)
|
||||
audio: (B, T, N) or (B, T)
|
||||
audio_lengths: (B,)
|
||||
"""
|
||||
text_token = batch['text_token'].to(device)
|
||||
text_token_len = batch['text_token_len'].to(device)
|
||||
speech_token = batch['speech_token'].to(device)
|
||||
speech_token_len = batch['speech_token_len'].to(device)
|
||||
embedding = batch['utt_embedding'].to(device)
|
||||
|
||||
# 1. prepare llm_target
|
||||
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + [self.speech_token_size]) for i in range(text_token.size(0))]
|
||||
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
||||
|
||||
# 1. encode text_token
|
||||
text_token = self.text_embedding(text_token)
|
||||
text_token, text_token_len = self.encode(text_token, text_token_len)
|
||||
|
||||
# 2. embedding projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
embedding = embedding.unsqueeze(1)
|
||||
|
||||
# 3. eos and task_id
|
||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||
|
||||
# 4. encode speech_token
|
||||
speech_token = self.speech_embedding(speech_token)
|
||||
|
||||
# 5. unpad and pad
|
||||
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len)
|
||||
|
||||
# 6. run lm forward
|
||||
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
||||
logits = self.llm_decoder(lm_output)
|
||||
loss = self.criterion_ce(logits, lm_target)
|
||||
acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
|
||||
return {'loss': loss, 'acc': acc}
|
||||
|
||||
def sampling_ids(
|
||||
self,
|
||||
weighted_scores: torch.Tensor,
|
||||
sampling: Union[bool, int, float] = True,
|
||||
beam_size: int = 1,
|
||||
ignore_eos: bool = True,
|
||||
):
|
||||
while True:
|
||||
prob, indices = weighted_scores.softmax(dim=-1).topk(sampling)
|
||||
top_ids = prob.multinomial(beam_size, replacement=True)
|
||||
top_ids = indices[top_ids]
|
||||
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
||||
break
|
||||
return top_ids
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(
|
||||
self,
|
||||
text: torch.Tensor,
|
||||
text_len: torch.Tensor,
|
||||
prompt_text: torch.Tensor,
|
||||
prompt_text_len: torch.Tensor,
|
||||
prompt_speech_token: torch.Tensor,
|
||||
prompt_speech_token_len: torch.Tensor,
|
||||
embedding: torch.Tensor,
|
||||
beam_size: int = 1,
|
||||
sampling: int = 25,
|
||||
max_token_text_ratio: float = 20,
|
||||
min_token_text_ratio: float = 2,
|
||||
) -> torch.Tensor:
|
||||
device = text.device
|
||||
text = torch.concat([prompt_text, text], dim=1)
|
||||
text_len += prompt_text_len
|
||||
text = self.text_embedding(text)
|
||||
|
||||
# 1. encode text
|
||||
text, text_len = self.encode(text, text_len)
|
||||
|
||||
# 2. encode embedding
|
||||
if embedding.shape[0] != 0:
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
embedding = embedding.unsqueeze(dim=1)
|
||||
else:
|
||||
embedding = torch.zeros(1, 0, self.llm_input_size).to(device)
|
||||
|
||||
# 3. concat llm_input
|
||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||
if prompt_speech_token_len != 0:
|
||||
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||
else:
|
||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size).to(device)
|
||||
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||
|
||||
# 4. cal min/max_length
|
||||
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
||||
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
||||
|
||||
# 5. step by step decode
|
||||
out_tokens = []
|
||||
offset = 0
|
||||
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
||||
for i in range(max_len):
|
||||
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=0, required_cache_size=-1, att_cache=att_cache, cnn_cache=cnn_cache,
|
||||
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool))
|
||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), sampling, beam_size, ignore_eos=True if i < min_len else False).item()
|
||||
if top_ids == self.speech_token_size:
|
||||
break
|
||||
out_tokens.append(top_ids)
|
||||
offset += lm_input.size(1)
|
||||
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||
|
||||
return torch.tensor([out_tokens], dtype=torch.int64, device=device)
|
||||
0
cosyvoice/transformer/__init__.py
Normal file
0
cosyvoice/transformer/__init__.py
Normal file
84
cosyvoice/transformer/activation.py
Normal file
84
cosyvoice/transformer/activation.py
Normal file
@@ -0,0 +1,84 @@
|
||||
# Copyright (c) 2020 Johns Hopkins University (Shinji Watanabe)
|
||||
# 2020 Northwestern Polytechnical University (Pengcheng Guo)
|
||||
# 2020 Mobvoi Inc (Binbin Zhang)
|
||||
# 2024 Alibaba Inc (Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Swish() activation function for Conformer."""
|
||||
|
||||
import torch
|
||||
from torch import nn, sin, pow
|
||||
from torch.nn import Parameter
|
||||
|
||||
|
||||
class Swish(torch.nn.Module):
|
||||
"""Construct an Swish object."""
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Return Swish activation function."""
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
class Snake(nn.Module):
|
||||
'''
|
||||
Implementation of a sine-based periodic activation function
|
||||
Shape:
|
||||
- Input: (B, C, T)
|
||||
- Output: (B, C, T), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||||
https://arxiv.org/abs/2006.08195
|
||||
Examples:
|
||||
>>> a1 = snake(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
||||
'''
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- alpha: trainable parameter
|
||||
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||||
alpha will be trained along with the rest of your model.
|
||||
'''
|
||||
super(Snake, self).__init__()
|
||||
self.in_features = in_features
|
||||
|
||||
# initialize alpha
|
||||
self.alpha_logscale = alpha_logscale
|
||||
if self.alpha_logscale: # log scale alphas initialized to zeros
|
||||
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
||||
else: # linear scale alphas initialized to ones
|
||||
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
||||
|
||||
self.alpha.requires_grad = alpha_trainable
|
||||
|
||||
self.no_div_by_zero = 0.000000001
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
Snake ∶= x + 1/a * sin^2 (xa)
|
||||
'''
|
||||
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
||||
if self.alpha_logscale:
|
||||
alpha = torch.exp(alpha)
|
||||
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||||
|
||||
return x
|
||||
326
cosyvoice/transformer/attention.py
Normal file
326
cosyvoice/transformer/attention.py
Normal file
@@ -0,0 +1,326 @@
|
||||
# Copyright (c) 2019 Shigeki Karita
|
||||
# 2020 Mobvoi Inc (Binbin Zhang)
|
||||
# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
|
||||
# 2024 Alibaba Inc (Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Multi-Head Attention layer definition."""
|
||||
|
||||
import math
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class MultiHeadedAttention(nn.Module):
|
||||
"""Multi-Head Attention layer.
|
||||
|
||||
Args:
|
||||
n_head (int): The number of heads.
|
||||
n_feat (int): The number of features.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
n_head: int,
|
||||
n_feat: int,
|
||||
dropout_rate: float,
|
||||
key_bias: bool = True):
|
||||
"""Construct an MultiHeadedAttention object."""
|
||||
super().__init__()
|
||||
assert n_feat % n_head == 0
|
||||
# We assume d_v always equals d_k
|
||||
self.d_k = n_feat // n_head
|
||||
self.h = n_head
|
||||
self.linear_q = nn.Linear(n_feat, n_feat)
|
||||
self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
|
||||
self.linear_v = nn.Linear(n_feat, n_feat)
|
||||
self.linear_out = nn.Linear(n_feat, n_feat)
|
||||
self.dropout = nn.Dropout(p=dropout_rate)
|
||||
|
||||
def forward_qkv(
|
||||
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Transform query, key and value.
|
||||
|
||||
Args:
|
||||
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||||
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||||
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Transformed query tensor, size
|
||||
(#batch, n_head, time1, d_k).
|
||||
torch.Tensor: Transformed key tensor, size
|
||||
(#batch, n_head, time2, d_k).
|
||||
torch.Tensor: Transformed value tensor, size
|
||||
(#batch, n_head, time2, d_k).
|
||||
|
||||
"""
|
||||
n_batch = query.size(0)
|
||||
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
||||
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
||||
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
||||
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
||||
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
||||
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
||||
|
||||
return q, k, v
|
||||
|
||||
def forward_attention(
|
||||
self,
|
||||
value: torch.Tensor,
|
||||
scores: torch.Tensor,
|
||||
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
|
||||
) -> torch.Tensor:
|
||||
"""Compute attention context vector.
|
||||
|
||||
Args:
|
||||
value (torch.Tensor): Transformed value, size
|
||||
(#batch, n_head, time2, d_k).
|
||||
scores (torch.Tensor): Attention score, size
|
||||
(#batch, n_head, time1, time2).
|
||||
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
|
||||
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Transformed value (#batch, time1, d_model)
|
||||
weighted by the attention score (#batch, time1, time2).
|
||||
|
||||
"""
|
||||
n_batch = value.size(0)
|
||||
# NOTE(xcsong): When will `if mask.size(2) > 0` be True?
|
||||
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
|
||||
# 1st chunk to ease the onnx export.]
|
||||
# 2. pytorch training
|
||||
if mask.size(2) > 0: # time2 > 0
|
||||
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
||||
# For last chunk, time2 might be larger than scores.size(-1)
|
||||
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
|
||||
scores = scores.masked_fill(mask, -float('inf'))
|
||||
attn = torch.softmax(scores, dim=-1).masked_fill(
|
||||
mask, 0.0) # (batch, head, time1, time2)
|
||||
# NOTE(xcsong): When will `if mask.size(2) > 0` be False?
|
||||
# 1. onnx(16/-1, -1/-1, 16/0)
|
||||
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
|
||||
else:
|
||||
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
||||
|
||||
p_attn = self.dropout(attn)
|
||||
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
||||
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
|
||||
self.h * self.d_k)
|
||||
) # (batch, time1, d_model)
|
||||
|
||||
return self.linear_out(x) # (batch, time1, d_model)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
||||
pos_emb: torch.Tensor = torch.empty(0),
|
||||
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute scaled dot product attention.
|
||||
|
||||
Args:
|
||||
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||||
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||||
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||||
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
||||
(#batch, time1, time2).
|
||||
1.When applying cross attention between decoder and encoder,
|
||||
the batch padding mask for input is in (#batch, 1, T) shape.
|
||||
2.When applying self attention of encoder,
|
||||
the mask is in (#batch, T, T) shape.
|
||||
3.When applying self attention of decoder,
|
||||
the mask is in (#batch, L, L) shape.
|
||||
4.If the different position in decoder see different block
|
||||
of the encoder, such as Mocha, the passed in mask could be
|
||||
in (#batch, L, T) shape. But there is no such case in current
|
||||
Wenet.
|
||||
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
||||
where `cache_t == chunk_size * num_decoding_left_chunks`
|
||||
and `head * d_k == size`
|
||||
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time1, d_model).
|
||||
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
||||
where `cache_t == chunk_size * num_decoding_left_chunks`
|
||||
and `head * d_k == size`
|
||||
|
||||
"""
|
||||
q, k, v = self.forward_qkv(query, key, value)
|
||||
|
||||
# NOTE(xcsong):
|
||||
# when export onnx model, for 1st chunk, we feed
|
||||
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
||||
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
||||
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
||||
# and we will always do splitting and
|
||||
# concatnation(this will simplify onnx export). Note that
|
||||
# it's OK to concat & split zero-shaped tensors(see code below).
|
||||
# when export jit model, for 1st chunk, we always feed
|
||||
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
||||
# >>> a = torch.ones((1, 2, 0, 4))
|
||||
# >>> b = torch.ones((1, 2, 3, 4))
|
||||
# >>> c = torch.cat((a, b), dim=2)
|
||||
# >>> torch.equal(b, c) # True
|
||||
# >>> d = torch.split(a, 2, dim=-1)
|
||||
# >>> torch.equal(d[0], d[1]) # True
|
||||
if cache.size(0) > 0:
|
||||
key_cache, value_cache = torch.split(cache,
|
||||
cache.size(-1) // 2,
|
||||
dim=-1)
|
||||
k = torch.cat([key_cache, k], dim=2)
|
||||
v = torch.cat([value_cache, v], dim=2)
|
||||
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
||||
# non-trivial to calculate `next_cache_start` here.
|
||||
new_cache = torch.cat((k, v), dim=-1)
|
||||
|
||||
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
||||
return self.forward_attention(v, scores, mask), new_cache
|
||||
|
||||
|
||||
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
||||
"""Multi-Head Attention layer with relative position encoding.
|
||||
Paper: https://arxiv.org/abs/1901.02860
|
||||
Args:
|
||||
n_head (int): The number of heads.
|
||||
n_feat (int): The number of features.
|
||||
dropout_rate (float): Dropout rate.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
n_head: int,
|
||||
n_feat: int,
|
||||
dropout_rate: float,
|
||||
key_bias: bool = True):
|
||||
"""Construct an RelPositionMultiHeadedAttention object."""
|
||||
super().__init__(n_head, n_feat, dropout_rate, key_bias)
|
||||
# linear transformation for positional encoding
|
||||
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
||||
# these two learnable bias are used in matrix c and matrix d
|
||||
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
||||
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
||||
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
||||
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
||||
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
||||
|
||||
def rel_shift(self, x):
|
||||
"""Compute relative positional encoding.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
|
||||
time1 means the length of query vector.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Output tensor.
|
||||
|
||||
"""
|
||||
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
|
||||
x_padded = torch.cat([zero_pad, x], dim=-1)
|
||||
|
||||
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
|
||||
x = x_padded[:, :, 1:].view_as(x)[
|
||||
:, :, :, : x.size(-1) // 2 + 1
|
||||
] # only keep the positions from 0 to time2
|
||||
return x
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
||||
pos_emb: torch.Tensor = torch.empty(0),
|
||||
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
||||
Args:
|
||||
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||||
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||||
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||||
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
||||
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
||||
pos_emb (torch.Tensor): Positional embedding tensor
|
||||
(#batch, time2, size).
|
||||
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
||||
where `cache_t == chunk_size * num_decoding_left_chunks`
|
||||
and `head * d_k == size`
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time1, d_model).
|
||||
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
||||
where `cache_t == chunk_size * num_decoding_left_chunks`
|
||||
and `head * d_k == size`
|
||||
"""
|
||||
q, k, v = self.forward_qkv(query, key, value)
|
||||
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
||||
|
||||
# NOTE(xcsong):
|
||||
# when export onnx model, for 1st chunk, we feed
|
||||
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
||||
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
||||
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
||||
# and we will always do splitting and
|
||||
# concatnation(this will simplify onnx export). Note that
|
||||
# it's OK to concat & split zero-shaped tensors(see code below).
|
||||
# when export jit model, for 1st chunk, we always feed
|
||||
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
||||
# >>> a = torch.ones((1, 2, 0, 4))
|
||||
# >>> b = torch.ones((1, 2, 3, 4))
|
||||
# >>> c = torch.cat((a, b), dim=2)
|
||||
# >>> torch.equal(b, c) # True
|
||||
# >>> d = torch.split(a, 2, dim=-1)
|
||||
# >>> torch.equal(d[0], d[1]) # True
|
||||
if cache.size(0) > 0:
|
||||
key_cache, value_cache = torch.split(cache,
|
||||
cache.size(-1) // 2,
|
||||
dim=-1)
|
||||
k = torch.cat([key_cache, k], dim=2)
|
||||
v = torch.cat([value_cache, v], dim=2)
|
||||
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
||||
# non-trivial to calculate `next_cache_start` here.
|
||||
new_cache = torch.cat((k, v), dim=-1)
|
||||
|
||||
n_batch_pos = pos_emb.size(0)
|
||||
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
||||
p = p.transpose(1, 2) # (batch, head, time1, d_k)
|
||||
|
||||
# (batch, head, time1, d_k)
|
||||
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
||||
# (batch, head, time1, d_k)
|
||||
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
||||
|
||||
# compute attention score
|
||||
# first compute matrix a and matrix c
|
||||
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
||||
# (batch, head, time1, time2)
|
||||
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
||||
|
||||
# compute matrix b and matrix d
|
||||
# (batch, head, time1, time2)
|
||||
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
||||
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
|
||||
if matrix_ac.shape != matrix_bd.shape:
|
||||
matrix_bd = self.rel_shift(matrix_bd)
|
||||
|
||||
scores = (matrix_ac + matrix_bd) / math.sqrt(
|
||||
self.d_k) # (batch, head, time1, time2)
|
||||
|
||||
return self.forward_attention(v, scores, mask), new_cache
|
||||
145
cosyvoice/transformer/convolution.py
Normal file
145
cosyvoice/transformer/convolution.py
Normal file
@@ -0,0 +1,145 @@
|
||||
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
||||
# 2024 Alibaba Inc (Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||
"""ConvolutionModule definition."""
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class ConvolutionModule(nn.Module):
|
||||
"""ConvolutionModule in Conformer model."""
|
||||
|
||||
def __init__(self,
|
||||
channels: int,
|
||||
kernel_size: int = 15,
|
||||
activation: nn.Module = nn.ReLU(),
|
||||
norm: str = "batch_norm",
|
||||
causal: bool = False,
|
||||
bias: bool = True):
|
||||
"""Construct an ConvolutionModule object.
|
||||
Args:
|
||||
channels (int): The number of channels of conv layers.
|
||||
kernel_size (int): Kernel size of conv layers.
|
||||
causal (int): Whether use causal convolution or not
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.pointwise_conv1 = nn.Conv1d(
|
||||
channels,
|
||||
2 * channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
)
|
||||
# self.lorder is used to distinguish if it's a causal convolution,
|
||||
# if self.lorder > 0: it's a causal convolution, the input will be
|
||||
# padded with self.lorder frames on the left in forward.
|
||||
# else: it's a symmetrical convolution
|
||||
if causal:
|
||||
padding = 0
|
||||
self.lorder = kernel_size - 1
|
||||
else:
|
||||
# kernel_size should be an odd number for none causal convolution
|
||||
assert (kernel_size - 1) % 2 == 0
|
||||
padding = (kernel_size - 1) // 2
|
||||
self.lorder = 0
|
||||
self.depthwise_conv = nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=padding,
|
||||
groups=channels,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
assert norm in ['batch_norm', 'layer_norm']
|
||||
if norm == "batch_norm":
|
||||
self.use_layer_norm = False
|
||||
self.norm = nn.BatchNorm1d(channels)
|
||||
else:
|
||||
self.use_layer_norm = True
|
||||
self.norm = nn.LayerNorm(channels)
|
||||
|
||||
self.pointwise_conv2 = nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
)
|
||||
self.activation = activation
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
||||
cache: torch.Tensor = torch.zeros((0, 0, 0)),
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute convolution module.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, channels).
|
||||
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
|
||||
(0, 0, 0) means fake mask.
|
||||
cache (torch.Tensor): left context cache, it is only
|
||||
used in causal convolution (#batch, channels, cache_t),
|
||||
(0, 0, 0) meas fake cache.
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time, channels).
|
||||
"""
|
||||
# exchange the temporal dimension and the feature dimension
|
||||
x = x.transpose(1, 2) # (#batch, channels, time)
|
||||
|
||||
# mask batch padding
|
||||
if mask_pad.size(2) > 0: # time > 0
|
||||
x.masked_fill_(~mask_pad, 0.0)
|
||||
|
||||
if self.lorder > 0:
|
||||
if cache.size(2) == 0: # cache_t == 0
|
||||
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
|
||||
else:
|
||||
assert cache.size(0) == x.size(0) # equal batch
|
||||
assert cache.size(1) == x.size(1) # equal channel
|
||||
x = torch.cat((cache, x), dim=2)
|
||||
assert (x.size(2) > self.lorder)
|
||||
new_cache = x[:, :, -self.lorder:]
|
||||
else:
|
||||
# It's better we just return None if no cache is required,
|
||||
# However, for JIT export, here we just fake one tensor instead of
|
||||
# None.
|
||||
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
||||
|
||||
# GLU mechanism
|
||||
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
|
||||
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
|
||||
|
||||
# 1D Depthwise Conv
|
||||
x = self.depthwise_conv(x)
|
||||
if self.use_layer_norm:
|
||||
x = x.transpose(1, 2)
|
||||
x = self.activation(self.norm(x))
|
||||
if self.use_layer_norm:
|
||||
x = x.transpose(1, 2)
|
||||
x = self.pointwise_conv2(x)
|
||||
# mask batch padding
|
||||
if mask_pad.size(2) > 0: # time > 0
|
||||
x.masked_fill_(~mask_pad, 0.0)
|
||||
|
||||
return x.transpose(1, 2), new_cache
|
||||
396
cosyvoice/transformer/decoder.py
Normal file
396
cosyvoice/transformer/decoder.py
Normal file
@@ -0,0 +1,396 @@
|
||||
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
||||
# 2024 Alibaba Inc (Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||
"""Decoder definition."""
|
||||
from typing import Tuple, List, Optional
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint as ckpt
|
||||
import logging
|
||||
|
||||
from cosyvoice.transformer.decoder_layer import DecoderLayer
|
||||
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
||||
from cosyvoice.utils.class_utils import (
|
||||
COSYVOICE_EMB_CLASSES,
|
||||
COSYVOICE_ATTENTION_CLASSES,
|
||||
COSYVOICE_ACTIVATION_CLASSES,
|
||||
)
|
||||
from cosyvoice.utils.mask import (subsequent_mask, make_pad_mask)
|
||||
|
||||
|
||||
class TransformerDecoder(torch.nn.Module):
|
||||
"""Base class of Transfomer decoder module.
|
||||
Args:
|
||||
vocab_size: output dim
|
||||
encoder_output_size: dimension of attention
|
||||
attention_heads: the number of heads of multi head attention
|
||||
linear_units: the hidden units number of position-wise feedforward
|
||||
num_blocks: the number of decoder blocks
|
||||
dropout_rate: dropout rate
|
||||
self_attention_dropout_rate: dropout rate for attention
|
||||
input_layer: input layer type
|
||||
use_output_layer: whether to use output layer
|
||||
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
||||
normalize_before:
|
||||
True: use layer_norm before each sub-block of a layer.
|
||||
False: use layer_norm after each sub-block of a layer.
|
||||
src_attention: if false, encoder-decoder cross attention is not
|
||||
applied, such as CIF model
|
||||
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
||||
gradient_checkpointing: rerunning a forward-pass segment for each
|
||||
checkpointed segment during backward.
|
||||
tie_word_embedding: Tie or clone module weights depending of whether we are
|
||||
using TorchScript or not
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
encoder_output_size: int,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
self_attention_dropout_rate: float = 0.0,
|
||||
src_attention_dropout_rate: float = 0.0,
|
||||
input_layer: str = "embed",
|
||||
use_output_layer: bool = True,
|
||||
normalize_before: bool = True,
|
||||
src_attention: bool = True,
|
||||
key_bias: bool = True,
|
||||
activation_type: str = "relu",
|
||||
gradient_checkpointing: bool = False,
|
||||
tie_word_embedding: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
attention_dim = encoder_output_size
|
||||
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
||||
|
||||
self.embed = torch.nn.Sequential(
|
||||
torch.nn.Identity() if input_layer == "no_pos" else
|
||||
torch.nn.Embedding(vocab_size, attention_dim),
|
||||
COSYVOICE_EMB_CLASSES[input_layer](attention_dim,
|
||||
positional_dropout_rate),
|
||||
)
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5)
|
||||
self.use_output_layer = use_output_layer
|
||||
if use_output_layer:
|
||||
self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
|
||||
else:
|
||||
self.output_layer = torch.nn.Identity()
|
||||
self.num_blocks = num_blocks
|
||||
self.decoders = torch.nn.ModuleList([
|
||||
DecoderLayer(
|
||||
attention_dim,
|
||||
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
||||
attention_heads, attention_dim,
|
||||
self_attention_dropout_rate, key_bias),
|
||||
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
||||
attention_heads, attention_dim, src_attention_dropout_rate,
|
||||
key_bias) if src_attention else None,
|
||||
PositionwiseFeedForward(attention_dim, linear_units,
|
||||
dropout_rate, activation),
|
||||
dropout_rate,
|
||||
normalize_before,
|
||||
) for _ in range(self.num_blocks)
|
||||
])
|
||||
|
||||
self.gradient_checkpointing = gradient_checkpointing
|
||||
self.tie_word_embedding = tie_word_embedding
|
||||
|
||||
def forward(
|
||||
self,
|
||||
memory: torch.Tensor,
|
||||
memory_mask: torch.Tensor,
|
||||
ys_in_pad: torch.Tensor,
|
||||
ys_in_lens: torch.Tensor,
|
||||
r_ys_in_pad: torch.Tensor = torch.empty(0),
|
||||
reverse_weight: float = 0.0,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Forward decoder.
|
||||
Args:
|
||||
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
||||
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
||||
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
||||
ys_in_lens: input lengths of this batch (batch)
|
||||
r_ys_in_pad: not used in transformer decoder, in order to unify api
|
||||
with bidirectional decoder
|
||||
reverse_weight: not used in transformer decoder, in order to unify
|
||||
api with bidirectional decode
|
||||
Returns:
|
||||
(tuple): tuple containing:
|
||||
x: decoded token score before softmax (batch, maxlen_out,
|
||||
vocab_size) if use_output_layer is True,
|
||||
torch.tensor(0.0), in order to unify api with bidirectional decoder
|
||||
olens: (batch, )
|
||||
NOTE(xcsong):
|
||||
We pass the `__call__` method of the modules instead of `forward` to the
|
||||
checkpointing API because `__call__` attaches all the hooks of the module.
|
||||
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
||||
"""
|
||||
tgt = ys_in_pad
|
||||
maxlen = tgt.size(1)
|
||||
# tgt_mask: (B, 1, L)
|
||||
tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1)
|
||||
tgt_mask = tgt_mask.to(tgt.device)
|
||||
# m: (1, L, L)
|
||||
m = subsequent_mask(tgt_mask.size(-1),
|
||||
device=tgt_mask.device).unsqueeze(0)
|
||||
# tgt_mask: (B, L, L)
|
||||
tgt_mask = tgt_mask & m
|
||||
x, _ = self.embed(tgt)
|
||||
if self.gradient_checkpointing and self.training:
|
||||
x = self.forward_layers_checkpointed(x, tgt_mask, memory,
|
||||
memory_mask)
|
||||
else:
|
||||
x = self.forward_layers(x, tgt_mask, memory, memory_mask)
|
||||
if self.normalize_before:
|
||||
x = self.after_norm(x)
|
||||
if self.use_output_layer:
|
||||
x = self.output_layer(x)
|
||||
olens = tgt_mask.sum(1)
|
||||
return x, torch.tensor(0.0), olens
|
||||
|
||||
def forward_layers(self, x: torch.Tensor, tgt_mask: torch.Tensor,
|
||||
memory: torch.Tensor,
|
||||
memory_mask: torch.Tensor) -> torch.Tensor:
|
||||
for layer in self.decoders:
|
||||
x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory,
|
||||
memory_mask)
|
||||
return x
|
||||
|
||||
@torch.jit.ignore(drop=True)
|
||||
def forward_layers_checkpointed(self, x: torch.Tensor,
|
||||
tgt_mask: torch.Tensor,
|
||||
memory: torch.Tensor,
|
||||
memory_mask: torch.Tensor) -> torch.Tensor:
|
||||
for layer in self.decoders:
|
||||
x, tgt_mask, memory, memory_mask = ckpt.checkpoint(
|
||||
layer.__call__, x, tgt_mask, memory, memory_mask)
|
||||
return x
|
||||
|
||||
def forward_one_step(
|
||||
self,
|
||||
memory: torch.Tensor,
|
||||
memory_mask: torch.Tensor,
|
||||
tgt: torch.Tensor,
|
||||
tgt_mask: torch.Tensor,
|
||||
cache: Optional[List[torch.Tensor]] = None,
|
||||
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
||||
"""Forward one step.
|
||||
This is only used for decoding.
|
||||
Args:
|
||||
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
||||
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
||||
tgt: input token ids, int64 (batch, maxlen_out)
|
||||
tgt_mask: input token mask, (batch, maxlen_out)
|
||||
dtype=torch.uint8 in PyTorch 1.2-
|
||||
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
||||
cache: cached output list of (batch, max_time_out-1, size)
|
||||
Returns:
|
||||
y, cache: NN output value and cache per `self.decoders`.
|
||||
y.shape` is (batch, maxlen_out, token)
|
||||
"""
|
||||
x, _ = self.embed(tgt)
|
||||
new_cache = []
|
||||
for i, decoder in enumerate(self.decoders):
|
||||
if cache is None:
|
||||
c = None
|
||||
else:
|
||||
c = cache[i]
|
||||
x, tgt_mask, memory, memory_mask = decoder(x,
|
||||
tgt_mask,
|
||||
memory,
|
||||
memory_mask,
|
||||
cache=c)
|
||||
new_cache.append(x)
|
||||
if self.normalize_before:
|
||||
y = self.after_norm(x[:, -1])
|
||||
else:
|
||||
y = x[:, -1]
|
||||
if self.use_output_layer:
|
||||
y = torch.log_softmax(self.output_layer(y), dim=-1)
|
||||
return y, new_cache
|
||||
|
||||
def tie_or_clone_weights(self, jit_mode: bool = True):
|
||||
"""Tie or clone module weights (between word_emb and output_layer)
|
||||
depending of whether we are using TorchScript or not"""
|
||||
if not self.use_output_layer:
|
||||
return
|
||||
if jit_mode:
|
||||
logging.info("clone emb.weight to output.weight")
|
||||
self.output_layer.weight = torch.nn.Parameter(
|
||||
self.embed[0].weight.clone())
|
||||
else:
|
||||
logging.info("tie emb.weight with output.weight")
|
||||
self.output_layer.weight = self.embed[0].weight
|
||||
|
||||
if getattr(self.output_layer, "bias", None) is not None:
|
||||
self.output_layer.bias.data = torch.nn.functional.pad(
|
||||
self.output_layer.bias.data,
|
||||
(
|
||||
0,
|
||||
self.output_layer.weight.shape[0] -
|
||||
self.output_layer.bias.shape[0],
|
||||
),
|
||||
"constant",
|
||||
0,
|
||||
)
|
||||
|
||||
|
||||
class BiTransformerDecoder(torch.nn.Module):
|
||||
"""Base class of Transfomer decoder module.
|
||||
Args:
|
||||
vocab_size: output dim
|
||||
encoder_output_size: dimension of attention
|
||||
attention_heads: the number of heads of multi head attention
|
||||
linear_units: the hidden units number of position-wise feedforward
|
||||
num_blocks: the number of decoder blocks
|
||||
r_num_blocks: the number of right to left decoder blocks
|
||||
dropout_rate: dropout rate
|
||||
self_attention_dropout_rate: dropout rate for attention
|
||||
input_layer: input layer type
|
||||
use_output_layer: whether to use output layer
|
||||
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
||||
normalize_before:
|
||||
True: use layer_norm before each sub-block of a layer.
|
||||
False: use layer_norm after each sub-block of a layer.
|
||||
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
encoder_output_size: int,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
r_num_blocks: int = 0,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
self_attention_dropout_rate: float = 0.0,
|
||||
src_attention_dropout_rate: float = 0.0,
|
||||
input_layer: str = "embed",
|
||||
use_output_layer: bool = True,
|
||||
normalize_before: bool = True,
|
||||
key_bias: bool = True,
|
||||
gradient_checkpointing: bool = False,
|
||||
tie_word_embedding: bool = False,
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
self.tie_word_embedding = tie_word_embedding
|
||||
self.left_decoder = TransformerDecoder(
|
||||
vocab_size,
|
||||
encoder_output_size,
|
||||
attention_heads,
|
||||
linear_units,
|
||||
num_blocks,
|
||||
dropout_rate,
|
||||
positional_dropout_rate,
|
||||
self_attention_dropout_rate,
|
||||
src_attention_dropout_rate,
|
||||
input_layer,
|
||||
use_output_layer,
|
||||
normalize_before,
|
||||
key_bias=key_bias,
|
||||
gradient_checkpointing=gradient_checkpointing,
|
||||
tie_word_embedding=tie_word_embedding)
|
||||
|
||||
self.right_decoder = TransformerDecoder(
|
||||
vocab_size,
|
||||
encoder_output_size,
|
||||
attention_heads,
|
||||
linear_units,
|
||||
r_num_blocks,
|
||||
dropout_rate,
|
||||
positional_dropout_rate,
|
||||
self_attention_dropout_rate,
|
||||
src_attention_dropout_rate,
|
||||
input_layer,
|
||||
use_output_layer,
|
||||
normalize_before,
|
||||
key_bias=key_bias,
|
||||
gradient_checkpointing=gradient_checkpointing,
|
||||
tie_word_embedding=tie_word_embedding)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
memory: torch.Tensor,
|
||||
memory_mask: torch.Tensor,
|
||||
ys_in_pad: torch.Tensor,
|
||||
ys_in_lens: torch.Tensor,
|
||||
r_ys_in_pad: torch.Tensor,
|
||||
reverse_weight: float = 0.0,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Forward decoder.
|
||||
Args:
|
||||
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
||||
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
||||
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
||||
ys_in_lens: input lengths of this batch (batch)
|
||||
r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
|
||||
used for right to left decoder
|
||||
reverse_weight: used for right to left decoder
|
||||
Returns:
|
||||
(tuple): tuple containing:
|
||||
x: decoded token score before softmax (batch, maxlen_out,
|
||||
vocab_size) if use_output_layer is True,
|
||||
r_x: x: decoded token score (right to left decoder)
|
||||
before softmax (batch, maxlen_out, vocab_size)
|
||||
if use_output_layer is True,
|
||||
olens: (batch, )
|
||||
"""
|
||||
l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad,
|
||||
ys_in_lens)
|
||||
r_x = torch.tensor(0.0)
|
||||
if reverse_weight > 0.0:
|
||||
r_x, _, olens = self.right_decoder(memory, memory_mask,
|
||||
r_ys_in_pad, ys_in_lens)
|
||||
return l_x, r_x, olens
|
||||
|
||||
def forward_one_step(
|
||||
self,
|
||||
memory: torch.Tensor,
|
||||
memory_mask: torch.Tensor,
|
||||
tgt: torch.Tensor,
|
||||
tgt_mask: torch.Tensor,
|
||||
cache: Optional[List[torch.Tensor]] = None,
|
||||
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
||||
"""Forward one step.
|
||||
This is only used for decoding.
|
||||
Args:
|
||||
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
||||
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
||||
tgt: input token ids, int64 (batch, maxlen_out)
|
||||
tgt_mask: input token mask, (batch, maxlen_out)
|
||||
dtype=torch.uint8 in PyTorch 1.2-
|
||||
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
||||
cache: cached output list of (batch, max_time_out-1, size)
|
||||
Returns:
|
||||
y, cache: NN output value and cache per `self.decoders`.
|
||||
y.shape` is (batch, maxlen_out, token)
|
||||
"""
|
||||
return self.left_decoder.forward_one_step(memory, memory_mask, tgt,
|
||||
tgt_mask, cache)
|
||||
|
||||
def tie_or_clone_weights(self, jit_mode: bool = True):
|
||||
"""Tie or clone module weights (between word_emb and output_layer)
|
||||
depending of whether we are using TorchScript or not"""
|
||||
self.left_decoder.tie_or_clone_weights(jit_mode)
|
||||
self.right_decoder.tie_or_clone_weights(jit_mode)
|
||||
132
cosyvoice/transformer/decoder_layer.py
Normal file
132
cosyvoice/transformer/decoder_layer.py
Normal file
@@ -0,0 +1,132 @@
|
||||
# Copyright (c) 2019 Shigeki Karita
|
||||
# 2020 Mobvoi Inc (Binbin Zhang)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Decoder self-attention layer definition."""
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class DecoderLayer(nn.Module):
|
||||
"""Single decoder layer module.
|
||||
|
||||
Args:
|
||||
size (int): Input dimension.
|
||||
self_attn (torch.nn.Module): Self-attention module instance.
|
||||
`MultiHeadedAttention` instance can be used as the argument.
|
||||
src_attn (torch.nn.Module): Inter-attention module instance.
|
||||
`MultiHeadedAttention` instance can be used as the argument.
|
||||
If `None` is passed, Inter-attention is not used, such as
|
||||
CIF, GPT, and other decoder only model.
|
||||
feed_forward (torch.nn.Module): Feed-forward module instance.
|
||||
`PositionwiseFeedForward` instance can be used as the argument.
|
||||
dropout_rate (float): Dropout rate.
|
||||
normalize_before (bool):
|
||||
True: use layer_norm before each sub-block.
|
||||
False: to use layer_norm after each sub-block.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
size: int,
|
||||
self_attn: nn.Module,
|
||||
src_attn: Optional[nn.Module],
|
||||
feed_forward: nn.Module,
|
||||
dropout_rate: float,
|
||||
normalize_before: bool = True,
|
||||
):
|
||||
"""Construct an DecoderLayer object."""
|
||||
super().__init__()
|
||||
self.size = size
|
||||
self.self_attn = self_attn
|
||||
self.src_attn = src_attn
|
||||
self.feed_forward = feed_forward
|
||||
self.norm1 = nn.LayerNorm(size, eps=1e-5)
|
||||
self.norm2 = nn.LayerNorm(size, eps=1e-5)
|
||||
self.norm3 = nn.LayerNorm(size, eps=1e-5)
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tgt: torch.Tensor,
|
||||
tgt_mask: torch.Tensor,
|
||||
memory: torch.Tensor,
|
||||
memory_mask: torch.Tensor,
|
||||
cache: Optional[torch.Tensor] = None
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Compute decoded features.
|
||||
|
||||
Args:
|
||||
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
|
||||
tgt_mask (torch.Tensor): Mask for input tensor
|
||||
(#batch, maxlen_out).
|
||||
memory (torch.Tensor): Encoded memory
|
||||
(#batch, maxlen_in, size).
|
||||
memory_mask (torch.Tensor): Encoded memory mask
|
||||
(#batch, maxlen_in).
|
||||
cache (torch.Tensor): cached tensors.
|
||||
(#batch, maxlen_out - 1, size).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, maxlen_out, size).
|
||||
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
|
||||
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
|
||||
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
|
||||
|
||||
"""
|
||||
residual = tgt
|
||||
if self.normalize_before:
|
||||
tgt = self.norm1(tgt)
|
||||
|
||||
if cache is None:
|
||||
tgt_q = tgt
|
||||
tgt_q_mask = tgt_mask
|
||||
else:
|
||||
# compute only the last frame query keeping dim: max_time_out -> 1
|
||||
assert cache.shape == (
|
||||
tgt.shape[0],
|
||||
tgt.shape[1] - 1,
|
||||
self.size,
|
||||
), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
|
||||
tgt_q = tgt[:, -1:, :]
|
||||
residual = residual[:, -1:, :]
|
||||
tgt_q_mask = tgt_mask[:, -1:, :]
|
||||
|
||||
x = residual + self.dropout(
|
||||
self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
|
||||
if not self.normalize_before:
|
||||
x = self.norm1(x)
|
||||
|
||||
if self.src_attn is not None:
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm2(x)
|
||||
x = residual + self.dropout(
|
||||
self.src_attn(x, memory, memory, memory_mask)[0])
|
||||
if not self.normalize_before:
|
||||
x = self.norm2(x)
|
||||
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm3(x)
|
||||
x = residual + self.dropout(self.feed_forward(x))
|
||||
if not self.normalize_before:
|
||||
x = self.norm3(x)
|
||||
|
||||
if cache is not None:
|
||||
x = torch.cat([cache, x], dim=1)
|
||||
|
||||
return x, tgt_mask, memory, memory_mask
|
||||
293
cosyvoice/transformer/embedding.py
Normal file
293
cosyvoice/transformer/embedding.py
Normal file
@@ -0,0 +1,293 @@
|
||||
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
||||
# 2024 Alibaba Inc (Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||
"""Positonal Encoding Module."""
|
||||
|
||||
import math
|
||||
from typing import Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
|
||||
|
||||
class PositionalEncoding(torch.nn.Module):
|
||||
"""Positional encoding.
|
||||
|
||||
:param int d_model: embedding dim
|
||||
:param float dropout_rate: dropout rate
|
||||
:param int max_len: maximum input length
|
||||
|
||||
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
|
||||
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
d_model: int,
|
||||
dropout_rate: float,
|
||||
max_len: int = 5000,
|
||||
reverse: bool = False):
|
||||
"""Construct an PositionalEncoding object."""
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.xscale = math.sqrt(self.d_model)
|
||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||
self.max_len = max_len
|
||||
|
||||
self.pe = torch.zeros(self.max_len, self.d_model)
|
||||
position = torch.arange(0, self.max_len,
|
||||
dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.d_model, 2, dtype=torch.float32) *
|
||||
-(math.log(10000.0) / self.d_model))
|
||||
self.pe[:, 0::2] = torch.sin(position * div_term)
|
||||
self.pe[:, 1::2] = torch.cos(position * div_term)
|
||||
self.pe = self.pe.unsqueeze(0)
|
||||
|
||||
def forward(self,
|
||||
x: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0) \
|
||||
-> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Add positional encoding.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input. Its shape is (batch, time, ...)
|
||||
offset (int, torch.tensor): position offset
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
|
||||
torch.Tensor: for compatibility to RelPositionalEncoding
|
||||
"""
|
||||
|
||||
self.pe = self.pe.to(x.device)
|
||||
pos_emb = self.position_encoding(offset, x.size(1), False)
|
||||
x = x * self.xscale + pos_emb
|
||||
return self.dropout(x), self.dropout(pos_emb)
|
||||
|
||||
def position_encoding(self,
|
||||
offset: Union[int, torch.Tensor],
|
||||
size: int,
|
||||
apply_dropout: bool = True) -> torch.Tensor:
|
||||
""" For getting encoding in a streaming fashion
|
||||
|
||||
Attention!!!!!
|
||||
we apply dropout only once at the whole utterance level in a none
|
||||
streaming way, but will call this function several times with
|
||||
increasing input size in a streaming scenario, so the dropout will
|
||||
be applied several times.
|
||||
|
||||
Args:
|
||||
offset (int or torch.tensor): start offset
|
||||
size (int): required size of position encoding
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Corresponding encoding
|
||||
"""
|
||||
# How to subscript a Union type:
|
||||
# https://github.com/pytorch/pytorch/issues/69434
|
||||
if isinstance(offset, int):
|
||||
assert offset + size <= self.max_len
|
||||
pos_emb = self.pe[:, offset:offset + size]
|
||||
elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar
|
||||
assert offset + size <= self.max_len
|
||||
pos_emb = self.pe[:, offset:offset + size]
|
||||
else: # for batched streaming decoding on GPU
|
||||
assert torch.max(offset) + size <= self.max_len
|
||||
index = offset.unsqueeze(1) + \
|
||||
torch.arange(0, size).to(offset.device) # B X T
|
||||
flag = index > 0
|
||||
# remove negative offset
|
||||
index = index * flag
|
||||
pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model
|
||||
|
||||
if apply_dropout:
|
||||
pos_emb = self.dropout(pos_emb)
|
||||
return pos_emb
|
||||
|
||||
|
||||
class RelPositionalEncoding(PositionalEncoding):
|
||||
"""Relative positional encoding module.
|
||||
See : Appendix B in https://arxiv.org/abs/1901.02860
|
||||
Args:
|
||||
d_model (int): Embedding dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
max_len (int): Maximum input length.
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
|
||||
"""Initialize class."""
|
||||
super().__init__(d_model, dropout_rate, max_len, reverse=True)
|
||||
|
||||
def forward(self,
|
||||
x: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0) \
|
||||
-> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute positional encoding.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||||
Returns:
|
||||
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||||
torch.Tensor: Positional embedding tensor (1, time, `*`).
|
||||
"""
|
||||
self.pe = self.pe.to(x.device)
|
||||
x = x * self.xscale
|
||||
pos_emb = self.position_encoding(offset, x.size(1), False)
|
||||
return self.dropout(x), self.dropout(pos_emb)
|
||||
|
||||
|
||||
class WhisperPositionalEncoding(PositionalEncoding):
|
||||
""" Sinusoids position encoding used in openai-whisper.encoder
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 1500):
|
||||
super().__init__(d_model, dropout_rate, max_len)
|
||||
self.xscale = 1.0
|
||||
log_timescale_increment = np.log(10000) / (d_model // 2 - 1)
|
||||
inv_timescales = torch.exp(-log_timescale_increment *
|
||||
torch.arange(d_model // 2))
|
||||
scaled_time = torch.arange(max_len)[:, np.newaxis] * \
|
||||
inv_timescales[np.newaxis, :]
|
||||
pe = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
||||
delattr(self, "pe")
|
||||
self.register_buffer("pe", pe.unsqueeze(0))
|
||||
|
||||
|
||||
class LearnablePositionalEncoding(PositionalEncoding):
|
||||
""" Learnable position encoding used in openai-whisper.decoder
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 448):
|
||||
super().__init__(d_model, dropout_rate, max_len)
|
||||
# NOTE(xcsong): overwrite self.pe & self.xscale
|
||||
self.pe = torch.nn.Parameter(torch.empty(1, max_len, d_model))
|
||||
self.xscale = 1.0
|
||||
|
||||
|
||||
class NoPositionalEncoding(torch.nn.Module):
|
||||
""" No position encoding
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int, dropout_rate: float):
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||
|
||||
def forward(self,
|
||||
x: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0) \
|
||||
-> Tuple[torch.Tensor, torch.Tensor]:
|
||||
""" Just return zero vector for interface compatibility
|
||||
"""
|
||||
pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
|
||||
return self.dropout(x), pos_emb
|
||||
|
||||
def position_encoding(self, offset: Union[int, torch.Tensor],
|
||||
size: int) -> torch.Tensor:
|
||||
return torch.zeros(1, size, self.d_model)
|
||||
|
||||
|
||||
class EspnetRelPositionalEncoding(torch.nn.Module):
|
||||
"""Relative positional encoding module (new implementation).
|
||||
|
||||
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
||||
|
||||
See : Appendix B in https://arxiv.org/abs/1901.02860
|
||||
|
||||
Args:
|
||||
d_model (int): Embedding dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
max_len (int): Maximum input length.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, d_model, dropout_rate, max_len=5000):
|
||||
"""Construct an PositionalEncoding object."""
|
||||
super(EspnetRelPositionalEncoding, self).__init__()
|
||||
self.d_model = d_model
|
||||
self.xscale = math.sqrt(self.d_model)
|
||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||
self.pe = None
|
||||
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||
|
||||
def extend_pe(self, x):
|
||||
"""Reset the positional encodings."""
|
||||
if self.pe is not None:
|
||||
# self.pe contains both positive and negative parts
|
||||
# the length of self.pe is 2 * input_len - 1
|
||||
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
||||
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
# Suppose `i` means to the position of query vecotr and `j` means the
|
||||
# position of key vector. We use position relative positions when keys
|
||||
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
||||
pe_positive = torch.zeros(x.size(1), self.d_model)
|
||||
pe_negative = torch.zeros(x.size(1), self.d_model)
|
||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||
* -(math.log(10000.0) / self.d_model)
|
||||
)
|
||||
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
||||
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
||||
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
||||
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
||||
|
||||
# Reserve the order of positive indices and concat both positive and
|
||||
# negative indices. This is used to support the shifting trick
|
||||
# as in https://arxiv.org/abs/1901.02860
|
||||
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
||||
pe_negative = pe_negative[1:].unsqueeze(0)
|
||||
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0):
|
||||
"""Add positional encoding.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||||
|
||||
"""
|
||||
self.extend_pe(x)
|
||||
x = x * self.xscale
|
||||
pos_emb = self.position_encoding(size=x.size(1), offset=offset)
|
||||
return self.dropout(x), self.dropout(pos_emb)
|
||||
|
||||
def position_encoding(self,
|
||||
offset: Union[int, torch.Tensor],
|
||||
size: int) -> torch.Tensor:
|
||||
""" For getting encoding in a streaming fashion
|
||||
|
||||
Attention!!!!!
|
||||
we apply dropout only once at the whole utterance level in a none
|
||||
streaming way, but will call this function several times with
|
||||
increasing input size in a streaming scenario, so the dropout will
|
||||
be applied several times.
|
||||
|
||||
Args:
|
||||
offset (int or torch.tensor): start offset
|
||||
size (int): required size of position encoding
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Corresponding encoding
|
||||
"""
|
||||
pos_emb = self.pe[
|
||||
:,
|
||||
self.pe.size(1) // 2 - size + 1 : self.pe.size(1) // 2 + size,
|
||||
]
|
||||
return pos_emb
|
||||
472
cosyvoice/transformer/encoder.py
Normal file
472
cosyvoice/transformer/encoder.py
Normal file
@@ -0,0 +1,472 @@
|
||||
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
||||
# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
|
||||
# 2024 Alibaba Inc (Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||
"""Encoder definition."""
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint as ckpt
|
||||
|
||||
from cosyvoice.transformer.convolution import ConvolutionModule
|
||||
from cosyvoice.transformer.encoder_layer import TransformerEncoderLayer
|
||||
from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
|
||||
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
||||
from cosyvoice.utils.class_utils import (
|
||||
COSYVOICE_EMB_CLASSES,
|
||||
COSYVOICE_SUBSAMPLE_CLASSES,
|
||||
COSYVOICE_ATTENTION_CLASSES,
|
||||
COSYVOICE_ACTIVATION_CLASSES,
|
||||
)
|
||||
from cosyvoice.utils.mask import make_pad_mask
|
||||
from cosyvoice.utils.mask import add_optional_chunk_mask
|
||||
|
||||
|
||||
class BaseEncoder(torch.nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int = 256,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
attention_dropout_rate: float = 0.0,
|
||||
input_layer: str = "conv2d",
|
||||
pos_enc_layer_type: str = "abs_pos",
|
||||
normalize_before: bool = True,
|
||||
static_chunk_size: int = 0,
|
||||
use_dynamic_chunk: bool = False,
|
||||
global_cmvn: torch.nn.Module = None,
|
||||
use_dynamic_left_chunk: bool = False,
|
||||
gradient_checkpointing: bool = False,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
input_size (int): input dim
|
||||
output_size (int): dimension of attention
|
||||
attention_heads (int): the number of heads of multi head attention
|
||||
linear_units (int): the hidden units number of position-wise feed
|
||||
forward
|
||||
num_blocks (int): the number of decoder blocks
|
||||
dropout_rate (float): dropout rate
|
||||
attention_dropout_rate (float): dropout rate in attention
|
||||
positional_dropout_rate (float): dropout rate after adding
|
||||
positional encoding
|
||||
input_layer (str): input layer type.
|
||||
optional [linear, conv2d, conv2d6, conv2d8]
|
||||
pos_enc_layer_type (str): Encoder positional encoding layer type.
|
||||
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
|
||||
normalize_before (bool):
|
||||
True: use layer_norm before each sub-block of a layer.
|
||||
False: use layer_norm after each sub-block of a layer.
|
||||
static_chunk_size (int): chunk size for static chunk training and
|
||||
decoding
|
||||
use_dynamic_chunk (bool): whether use dynamic chunk size for
|
||||
training or not, You can only use fixed chunk(chunk_size > 0)
|
||||
or dyanmic chunk size(use_dynamic_chunk = True)
|
||||
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
|
||||
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
||||
dynamic chunk training
|
||||
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
||||
gradient_checkpointing: rerunning a forward-pass segment for each
|
||||
checkpointed segment during backward.
|
||||
"""
|
||||
super().__init__()
|
||||
self._output_size = output_size
|
||||
|
||||
self.global_cmvn = global_cmvn
|
||||
self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
||||
input_size,
|
||||
output_size,
|
||||
dropout_rate,
|
||||
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
||||
positional_dropout_rate),
|
||||
)
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
|
||||
self.static_chunk_size = static_chunk_size
|
||||
self.use_dynamic_chunk = use_dynamic_chunk
|
||||
self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
||||
self.gradient_checkpointing = gradient_checkpointing
|
||||
|
||||
def output_size(self) -> int:
|
||||
return self._output_size
|
||||
|
||||
def forward(
|
||||
self,
|
||||
xs: torch.Tensor,
|
||||
xs_lens: torch.Tensor,
|
||||
decoding_chunk_size: int = 0,
|
||||
num_decoding_left_chunks: int = -1,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Embed positions in tensor.
|
||||
|
||||
Args:
|
||||
xs: padded input tensor (B, T, D)
|
||||
xs_lens: input length (B)
|
||||
decoding_chunk_size: decoding chunk size for dynamic chunk
|
||||
0: default for training, use random dynamic chunk.
|
||||
<0: for decoding, use full chunk.
|
||||
>0: for decoding, use fixed chunk size as set.
|
||||
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
||||
the chunk size is decoding_chunk_size.
|
||||
>=0: use num_decoding_left_chunks
|
||||
<0: use all left chunks
|
||||
Returns:
|
||||
encoder output tensor xs, and subsampled masks
|
||||
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
||||
masks: torch.Tensor batch padding mask after subsample
|
||||
(B, 1, T' ~= T/subsample_rate)
|
||||
NOTE(xcsong):
|
||||
We pass the `__call__` method of the modules instead of `forward` to the
|
||||
checkpointing API because `__call__` attaches all the hooks of the module.
|
||||
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
||||
"""
|
||||
T = xs.size(1)
|
||||
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
||||
if self.global_cmvn is not None:
|
||||
xs = self.global_cmvn(xs)
|
||||
xs, pos_emb, masks = self.embed(xs, masks)
|
||||
mask_pad = masks # (B, 1, T/subsample_rate)
|
||||
chunk_masks = add_optional_chunk_mask(xs, masks,
|
||||
self.use_dynamic_chunk,
|
||||
self.use_dynamic_left_chunk,
|
||||
decoding_chunk_size,
|
||||
self.static_chunk_size,
|
||||
num_decoding_left_chunks)
|
||||
if self.gradient_checkpointing and self.training:
|
||||
xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb,
|
||||
mask_pad)
|
||||
else:
|
||||
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
||||
if self.normalize_before:
|
||||
xs = self.after_norm(xs)
|
||||
# Here we assume the mask is not changed in encoder layers, so just
|
||||
# return the masks before encoder layers, and the masks will be used
|
||||
# for cross attention with decoder later
|
||||
return xs, masks
|
||||
|
||||
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
||||
pos_emb: torch.Tensor,
|
||||
mask_pad: torch.Tensor) -> torch.Tensor:
|
||||
for layer in self.encoders:
|
||||
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
||||
return xs
|
||||
|
||||
@torch.jit.ignore(drop=True)
|
||||
def forward_layers_checkpointed(self, xs: torch.Tensor,
|
||||
chunk_masks: torch.Tensor,
|
||||
pos_emb: torch.Tensor,
|
||||
mask_pad: torch.Tensor) -> torch.Tensor:
|
||||
for layer in self.encoders:
|
||||
xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__, xs,
|
||||
chunk_masks, pos_emb,
|
||||
mask_pad)
|
||||
return xs
|
||||
|
||||
def forward_chunk(
|
||||
self,
|
||||
xs: torch.Tensor,
|
||||
offset: int,
|
||||
required_cache_size: int,
|
||||
att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||
cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||
att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
""" Forward just one chunk
|
||||
|
||||
Args:
|
||||
xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
|
||||
where `time == (chunk_size - 1) * subsample_rate + \
|
||||
subsample.right_context + 1`
|
||||
offset (int): current offset in encoder output time stamp
|
||||
required_cache_size (int): cache size required for next chunk
|
||||
compuation
|
||||
>=0: actual cache size
|
||||
<0: means all history cache is required
|
||||
att_cache (torch.Tensor): cache tensor for KEY & VALUE in
|
||||
transformer/conformer attention, with shape
|
||||
(elayers, head, cache_t1, d_k * 2), where
|
||||
`head * d_k == hidden-dim` and
|
||||
`cache_t1 == chunk_size * num_decoding_left_chunks`.
|
||||
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
|
||||
(elayers, b=1, hidden-dim, cache_t2), where
|
||||
`cache_t2 == cnn.lorder - 1`
|
||||
|
||||
Returns:
|
||||
torch.Tensor: output of current input xs,
|
||||
with shape (b=1, chunk_size, hidden-dim).
|
||||
torch.Tensor: new attention cache required for next chunk, with
|
||||
dynamic shape (elayers, head, ?, d_k * 2)
|
||||
depending on required_cache_size.
|
||||
torch.Tensor: new conformer cnn cache required for next chunk, with
|
||||
same shape as the original cnn_cache.
|
||||
|
||||
"""
|
||||
assert xs.size(0) == 1
|
||||
# tmp_masks is just for interface compatibility
|
||||
tmp_masks = torch.ones(1,
|
||||
xs.size(1),
|
||||
device=xs.device,
|
||||
dtype=torch.bool)
|
||||
tmp_masks = tmp_masks.unsqueeze(1)
|
||||
if self.global_cmvn is not None:
|
||||
xs = self.global_cmvn(xs)
|
||||
# NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
|
||||
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
|
||||
# NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim)
|
||||
elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
|
||||
chunk_size = xs.size(1)
|
||||
attention_key_size = cache_t1 + chunk_size
|
||||
pos_emb = self.embed.position_encoding(offset=offset - cache_t1,
|
||||
size=attention_key_size)
|
||||
if required_cache_size < 0:
|
||||
next_cache_start = 0
|
||||
elif required_cache_size == 0:
|
||||
next_cache_start = attention_key_size
|
||||
else:
|
||||
next_cache_start = max(attention_key_size - required_cache_size, 0)
|
||||
r_att_cache = []
|
||||
r_cnn_cache = []
|
||||
for i, layer in enumerate(self.encoders):
|
||||
# NOTE(xcsong): Before layer.forward
|
||||
# shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
|
||||
# shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2)
|
||||
xs, _, new_att_cache, new_cnn_cache = layer(
|
||||
xs,
|
||||
att_mask,
|
||||
pos_emb,
|
||||
att_cache=att_cache[i:i + 1] if elayers > 0 else att_cache,
|
||||
cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache)
|
||||
# NOTE(xcsong): After layer.forward
|
||||
# shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
|
||||
# shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
|
||||
r_att_cache.append(new_att_cache[:, :, next_cache_start:, :])
|
||||
r_cnn_cache.append(new_cnn_cache.unsqueeze(0))
|
||||
if self.normalize_before:
|
||||
xs = self.after_norm(xs)
|
||||
|
||||
# NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
|
||||
# ? may be larger than cache_t1, it depends on required_cache_size
|
||||
r_att_cache = torch.cat(r_att_cache, dim=0)
|
||||
# NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
|
||||
r_cnn_cache = torch.cat(r_cnn_cache, dim=0)
|
||||
|
||||
return (xs, r_att_cache, r_cnn_cache)
|
||||
|
||||
def forward_chunk_by_chunk(
|
||||
self,
|
||||
xs: torch.Tensor,
|
||||
decoding_chunk_size: int,
|
||||
num_decoding_left_chunks: int = -1,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
""" Forward input chunk by chunk with chunk_size like a streaming
|
||||
fashion
|
||||
|
||||
Here we should pay special attention to computation cache in the
|
||||
streaming style forward chunk by chunk. Three things should be taken
|
||||
into account for computation in the current network:
|
||||
1. transformer/conformer encoder layers output cache
|
||||
2. convolution in conformer
|
||||
3. convolution in subsampling
|
||||
|
||||
However, we don't implement subsampling cache for:
|
||||
1. We can control subsampling module to output the right result by
|
||||
overlapping input instead of cache left context, even though it
|
||||
wastes some computation, but subsampling only takes a very
|
||||
small fraction of computation in the whole model.
|
||||
2. Typically, there are several covolution layers with subsampling
|
||||
in subsampling module, it is tricky and complicated to do cache
|
||||
with different convolution layers with different subsampling
|
||||
rate.
|
||||
3. Currently, nn.Sequential is used to stack all the convolution
|
||||
layers in subsampling, we need to rewrite it to make it work
|
||||
with cache, which is not prefered.
|
||||
Args:
|
||||
xs (torch.Tensor): (1, max_len, dim)
|
||||
chunk_size (int): decoding chunk size
|
||||
"""
|
||||
assert decoding_chunk_size > 0
|
||||
# The model is trained by static or dynamic chunk
|
||||
assert self.static_chunk_size > 0 or self.use_dynamic_chunk
|
||||
subsampling = self.embed.subsampling_rate
|
||||
context = self.embed.right_context + 1 # Add current frame
|
||||
stride = subsampling * decoding_chunk_size
|
||||
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
||||
num_frames = xs.size(1)
|
||||
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
||||
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
||||
outputs = []
|
||||
offset = 0
|
||||
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
|
||||
|
||||
# Feed forward overlap input step by step
|
||||
for cur in range(0, num_frames - context + 1, stride):
|
||||
end = min(cur + decoding_window, num_frames)
|
||||
chunk_xs = xs[:, cur:end, :]
|
||||
(y, att_cache,
|
||||
cnn_cache) = self.forward_chunk(chunk_xs, offset,
|
||||
required_cache_size, att_cache,
|
||||
cnn_cache)
|
||||
outputs.append(y)
|
||||
offset += y.size(1)
|
||||
ys = torch.cat(outputs, 1)
|
||||
masks = torch.ones((1, 1, ys.size(1)),
|
||||
device=ys.device,
|
||||
dtype=torch.bool)
|
||||
return ys, masks
|
||||
|
||||
|
||||
class TransformerEncoder(BaseEncoder):
|
||||
"""Transformer encoder module."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int = 256,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
attention_dropout_rate: float = 0.0,
|
||||
input_layer: str = "conv2d",
|
||||
pos_enc_layer_type: str = "abs_pos",
|
||||
normalize_before: bool = True,
|
||||
static_chunk_size: int = 0,
|
||||
use_dynamic_chunk: bool = False,
|
||||
global_cmvn: torch.nn.Module = None,
|
||||
use_dynamic_left_chunk: bool = False,
|
||||
key_bias: bool = True,
|
||||
selfattention_layer_type: str = "selfattn",
|
||||
activation_type: str = "relu",
|
||||
gradient_checkpointing: bool = False,
|
||||
):
|
||||
""" Construct TransformerEncoder
|
||||
|
||||
See Encoder for the meaning of each parameter.
|
||||
"""
|
||||
super().__init__(input_size, output_size, attention_heads,
|
||||
linear_units, num_blocks, dropout_rate,
|
||||
positional_dropout_rate, attention_dropout_rate,
|
||||
input_layer, pos_enc_layer_type, normalize_before,
|
||||
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
||||
use_dynamic_left_chunk, gradient_checkpointing)
|
||||
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
||||
self.encoders = torch.nn.ModuleList([
|
||||
TransformerEncoderLayer(
|
||||
output_size,
|
||||
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](attention_heads,
|
||||
output_size,
|
||||
attention_dropout_rate,
|
||||
key_bias),
|
||||
PositionwiseFeedForward(output_size, linear_units,
|
||||
dropout_rate, activation),
|
||||
dropout_rate, normalize_before) for _ in range(num_blocks)
|
||||
])
|
||||
|
||||
|
||||
class ConformerEncoder(BaseEncoder):
|
||||
"""Conformer encoder module."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int = 256,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
attention_dropout_rate: float = 0.0,
|
||||
input_layer: str = "conv2d",
|
||||
pos_enc_layer_type: str = "rel_pos",
|
||||
normalize_before: bool = True,
|
||||
static_chunk_size: int = 0,
|
||||
use_dynamic_chunk: bool = False,
|
||||
global_cmvn: torch.nn.Module = None,
|
||||
use_dynamic_left_chunk: bool = False,
|
||||
positionwise_conv_kernel_size: int = 1,
|
||||
macaron_style: bool = True,
|
||||
selfattention_layer_type: str = "rel_selfattn",
|
||||
activation_type: str = "swish",
|
||||
use_cnn_module: bool = True,
|
||||
cnn_module_kernel: int = 15,
|
||||
causal: bool = False,
|
||||
cnn_module_norm: str = "batch_norm",
|
||||
key_bias: bool = True,
|
||||
gradient_checkpointing: bool = False,
|
||||
):
|
||||
"""Construct ConformerEncoder
|
||||
|
||||
Args:
|
||||
input_size to use_dynamic_chunk, see in BaseEncoder
|
||||
positionwise_conv_kernel_size (int): Kernel size of positionwise
|
||||
conv1d layer.
|
||||
macaron_style (bool): Whether to use macaron style for
|
||||
positionwise layer.
|
||||
selfattention_layer_type (str): Encoder attention layer type,
|
||||
the parameter has no effect now, it's just for configure
|
||||
compatibility.
|
||||
activation_type (str): Encoder activation function type.
|
||||
use_cnn_module (bool): Whether to use convolution module.
|
||||
cnn_module_kernel (int): Kernel size of convolution module.
|
||||
causal (bool): whether to use causal convolution or not.
|
||||
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
||||
"""
|
||||
super().__init__(input_size, output_size, attention_heads,
|
||||
linear_units, num_blocks, dropout_rate,
|
||||
positional_dropout_rate, attention_dropout_rate,
|
||||
input_layer, pos_enc_layer_type, normalize_before,
|
||||
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
||||
use_dynamic_left_chunk, gradient_checkpointing)
|
||||
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
||||
|
||||
# self-attention module definition
|
||||
encoder_selfattn_layer_args = (
|
||||
attention_heads,
|
||||
output_size,
|
||||
attention_dropout_rate,
|
||||
key_bias,
|
||||
)
|
||||
# feed-forward module definition
|
||||
positionwise_layer_args = (
|
||||
output_size,
|
||||
linear_units,
|
||||
dropout_rate,
|
||||
activation,
|
||||
)
|
||||
# convolution module definition
|
||||
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
||||
cnn_module_norm, causal)
|
||||
|
||||
self.encoders = torch.nn.ModuleList([
|
||||
ConformerEncoderLayer(
|
||||
output_size,
|
||||
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
||||
*encoder_selfattn_layer_args),
|
||||
PositionwiseFeedForward(*positionwise_layer_args),
|
||||
PositionwiseFeedForward(
|
||||
*positionwise_layer_args) if macaron_style else None,
|
||||
ConvolutionModule(
|
||||
*convolution_layer_args) if use_cnn_module else None,
|
||||
dropout_rate,
|
||||
normalize_before,
|
||||
) for _ in range(num_blocks)
|
||||
])
|
||||
236
cosyvoice/transformer/encoder_layer.py
Normal file
236
cosyvoice/transformer/encoder_layer.py
Normal file
@@ -0,0 +1,236 @@
|
||||
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
||||
# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||
"""Encoder self-attention layer definition."""
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
"""Encoder layer module.
|
||||
|
||||
Args:
|
||||
size (int): Input dimension.
|
||||
self_attn (torch.nn.Module): Self-attention module instance.
|
||||
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
||||
instance can be used as the argument.
|
||||
feed_forward (torch.nn.Module): Feed-forward module instance.
|
||||
`PositionwiseFeedForward`, instance can be used as the argument.
|
||||
dropout_rate (float): Dropout rate.
|
||||
normalize_before (bool):
|
||||
True: use layer_norm before each sub-block.
|
||||
False: to use layer_norm after each sub-block.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
size: int,
|
||||
self_attn: torch.nn.Module,
|
||||
feed_forward: torch.nn.Module,
|
||||
dropout_rate: float,
|
||||
normalize_before: bool = True,
|
||||
):
|
||||
"""Construct an EncoderLayer object."""
|
||||
super().__init__()
|
||||
self.self_attn = self_attn
|
||||
self.feed_forward = feed_forward
|
||||
self.norm1 = nn.LayerNorm(size, eps=1e-5)
|
||||
self.norm2 = nn.LayerNorm(size, eps=1e-5)
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
self.size = size
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
mask: torch.Tensor,
|
||||
pos_emb: torch.Tensor,
|
||||
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
||||
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
||||
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Compute encoded features.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): (#batch, time, size)
|
||||
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
|
||||
(0, 0, 0) means fake mask.
|
||||
pos_emb (torch.Tensor): just for interface compatibility
|
||||
to ConformerEncoderLayer
|
||||
mask_pad (torch.Tensor): does not used in transformer layer,
|
||||
just for unified api with conformer.
|
||||
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
|
||||
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
|
||||
cnn_cache (torch.Tensor): Convolution cache in conformer layer
|
||||
(#batch=1, size, cache_t2), not used here, it's for interface
|
||||
compatibility to ConformerEncoderLayer.
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time, size).
|
||||
torch.Tensor: Mask tensor (#batch, time, time).
|
||||
torch.Tensor: att_cache tensor,
|
||||
(#batch=1, head, cache_t1 + time, d_k * 2).
|
||||
torch.Tensor: cnn_cahce tensor (#batch=1, size, cache_t2).
|
||||
|
||||
"""
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm1(x)
|
||||
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb=pos_emb, cache=att_cache)
|
||||
x = residual + self.dropout(x_att)
|
||||
if not self.normalize_before:
|
||||
x = self.norm1(x)
|
||||
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm2(x)
|
||||
x = residual + self.dropout(self.feed_forward(x))
|
||||
if not self.normalize_before:
|
||||
x = self.norm2(x)
|
||||
|
||||
fake_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
||||
return x, mask, new_att_cache, fake_cnn_cache
|
||||
|
||||
|
||||
class ConformerEncoderLayer(nn.Module):
|
||||
"""Encoder layer module.
|
||||
Args:
|
||||
size (int): Input dimension.
|
||||
self_attn (torch.nn.Module): Self-attention module instance.
|
||||
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
||||
instance can be used as the argument.
|
||||
feed_forward (torch.nn.Module): Feed-forward module instance.
|
||||
`PositionwiseFeedForward` instance can be used as the argument.
|
||||
feed_forward_macaron (torch.nn.Module): Additional feed-forward module
|
||||
instance.
|
||||
`PositionwiseFeedForward` instance can be used as the argument.
|
||||
conv_module (torch.nn.Module): Convolution module instance.
|
||||
`ConvlutionModule` instance can be used as the argument.
|
||||
dropout_rate (float): Dropout rate.
|
||||
normalize_before (bool):
|
||||
True: use layer_norm before each sub-block.
|
||||
False: use layer_norm after each sub-block.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
size: int,
|
||||
self_attn: torch.nn.Module,
|
||||
feed_forward: Optional[nn.Module] = None,
|
||||
feed_forward_macaron: Optional[nn.Module] = None,
|
||||
conv_module: Optional[nn.Module] = None,
|
||||
dropout_rate: float = 0.1,
|
||||
normalize_before: bool = True,
|
||||
):
|
||||
"""Construct an EncoderLayer object."""
|
||||
super().__init__()
|
||||
self.self_attn = self_attn
|
||||
self.feed_forward = feed_forward
|
||||
self.feed_forward_macaron = feed_forward_macaron
|
||||
self.conv_module = conv_module
|
||||
self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module
|
||||
self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module
|
||||
if feed_forward_macaron is not None:
|
||||
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5)
|
||||
self.ff_scale = 0.5
|
||||
else:
|
||||
self.ff_scale = 1.0
|
||||
if self.conv_module is not None:
|
||||
self.norm_conv = nn.LayerNorm(size, eps=1e-5) # for the CNN module
|
||||
self.norm_final = nn.LayerNorm(
|
||||
size, eps=1e-5) # for the final output of the block
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
self.size = size
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
mask: torch.Tensor,
|
||||
pos_emb: torch.Tensor,
|
||||
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
||||
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
||||
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Compute encoded features.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): (#batch, time, size)
|
||||
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
|
||||
(0, 0, 0) means fake mask.
|
||||
pos_emb (torch.Tensor): positional encoding, must not be None
|
||||
for ConformerEncoderLayer.
|
||||
mask_pad (torch.Tensor): batch padding mask used for conv module.
|
||||
(#batch, 1,time), (0, 0, 0) means fake mask.
|
||||
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
|
||||
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
|
||||
cnn_cache (torch.Tensor): Convolution cache in conformer layer
|
||||
(#batch=1, size, cache_t2)
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time, size).
|
||||
torch.Tensor: Mask tensor (#batch, time, time).
|
||||
torch.Tensor: att_cache tensor,
|
||||
(#batch=1, head, cache_t1 + time, d_k * 2).
|
||||
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
|
||||
"""
|
||||
|
||||
# whether to use macaron style
|
||||
if self.feed_forward_macaron is not None:
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm_ff_macaron(x)
|
||||
x = residual + self.ff_scale * self.dropout(
|
||||
self.feed_forward_macaron(x))
|
||||
if not self.normalize_before:
|
||||
x = self.norm_ff_macaron(x)
|
||||
|
||||
# multi-headed self-attention module
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm_mha(x)
|
||||
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb,
|
||||
att_cache)
|
||||
x = residual + self.dropout(x_att)
|
||||
if not self.normalize_before:
|
||||
x = self.norm_mha(x)
|
||||
|
||||
# convolution module
|
||||
# Fake new cnn cache here, and then change it in conv_module
|
||||
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
||||
if self.conv_module is not None:
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm_conv(x)
|
||||
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
|
||||
x = residual + self.dropout(x)
|
||||
|
||||
if not self.normalize_before:
|
||||
x = self.norm_conv(x)
|
||||
|
||||
# feed forward module
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm_ff(x)
|
||||
|
||||
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
|
||||
if not self.normalize_before:
|
||||
x = self.norm_ff(x)
|
||||
|
||||
if self.conv_module is not None:
|
||||
x = self.norm_final(x)
|
||||
|
||||
return x, mask, new_att_cache, new_cnn_cache
|
||||
96
cosyvoice/transformer/label_smoothing_loss.py
Normal file
96
cosyvoice/transformer/label_smoothing_loss.py
Normal file
@@ -0,0 +1,96 @@
|
||||
# Copyright (c) 2019 Shigeki Karita
|
||||
# 2020 Mobvoi Inc (Binbin Zhang)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Label smoothing module."""
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class LabelSmoothingLoss(nn.Module):
|
||||
"""Label-smoothing loss.
|
||||
|
||||
In a standard CE loss, the label's data distribution is:
|
||||
[0,1,2] ->
|
||||
[
|
||||
[1.0, 0.0, 0.0],
|
||||
[0.0, 1.0, 0.0],
|
||||
[0.0, 0.0, 1.0],
|
||||
]
|
||||
|
||||
In the smoothing version CE Loss,some probabilities
|
||||
are taken from the true label prob (1.0) and are divided
|
||||
among other labels.
|
||||
|
||||
e.g.
|
||||
smoothing=0.1
|
||||
[0,1,2] ->
|
||||
[
|
||||
[0.9, 0.05, 0.05],
|
||||
[0.05, 0.9, 0.05],
|
||||
[0.05, 0.05, 0.9],
|
||||
]
|
||||
|
||||
Args:
|
||||
size (int): the number of class
|
||||
padding_idx (int): padding class id which will be ignored for loss
|
||||
smoothing (float): smoothing rate (0.0 means the conventional CE)
|
||||
normalize_length (bool):
|
||||
normalize loss by sequence length if True
|
||||
normalize loss by batch size if False
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
size: int,
|
||||
padding_idx: int,
|
||||
smoothing: float,
|
||||
normalize_length: bool = False):
|
||||
"""Construct an LabelSmoothingLoss object."""
|
||||
super(LabelSmoothingLoss, self).__init__()
|
||||
self.criterion = nn.KLDivLoss(reduction="none")
|
||||
self.padding_idx = padding_idx
|
||||
self.confidence = 1.0 - smoothing
|
||||
self.smoothing = smoothing
|
||||
self.size = size
|
||||
self.normalize_length = normalize_length
|
||||
|
||||
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
||||
"""Compute loss between x and target.
|
||||
|
||||
The model outputs and data labels tensors are flatten to
|
||||
(batch*seqlen, class) shape and a mask is applied to the
|
||||
padding part which should not be calculated for loss.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): prediction (batch, seqlen, class)
|
||||
target (torch.Tensor):
|
||||
target signal masked with self.padding_id (batch, seqlen)
|
||||
Returns:
|
||||
loss (torch.Tensor) : The KL loss, scalar float value
|
||||
"""
|
||||
assert x.size(2) == self.size
|
||||
batch_size = x.size(0)
|
||||
x = x.view(-1, self.size)
|
||||
target = target.view(-1)
|
||||
# use zeros_like instead of torch.no_grad() for true_dist,
|
||||
# since no_grad() can not be exported by JIT
|
||||
true_dist = torch.zeros_like(x)
|
||||
true_dist.fill_(self.smoothing / (self.size - 1))
|
||||
ignore = target == self.padding_idx # (B,)
|
||||
total = len(target) - ignore.sum().item()
|
||||
target = target.masked_fill(ignore, 0) # avoid -1 index
|
||||
true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
|
||||
kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
|
||||
denom = total if self.normalize_length else batch_size
|
||||
return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
|
||||
115
cosyvoice/transformer/positionwise_feed_forward.py
Normal file
115
cosyvoice/transformer/positionwise_feed_forward.py
Normal file
@@ -0,0 +1,115 @@
|
||||
# Copyright (c) 2019 Shigeki Karita
|
||||
# 2020 Mobvoi Inc (Binbin Zhang)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Positionwise feed forward layer definition."""
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class PositionwiseFeedForward(torch.nn.Module):
|
||||
"""Positionwise feed forward layer.
|
||||
|
||||
FeedForward are appied on each position of the sequence.
|
||||
The output dim is same with the input dim.
|
||||
|
||||
Args:
|
||||
idim (int): Input dimenstion.
|
||||
hidden_units (int): The number of hidden units.
|
||||
dropout_rate (float): Dropout rate.
|
||||
activation (torch.nn.Module): Activation function
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
idim: int,
|
||||
hidden_units: int,
|
||||
dropout_rate: float,
|
||||
activation: torch.nn.Module = torch.nn.ReLU(),
|
||||
):
|
||||
"""Construct a PositionwiseFeedForward object."""
|
||||
super(PositionwiseFeedForward, self).__init__()
|
||||
self.w_1 = torch.nn.Linear(idim, hidden_units)
|
||||
self.activation = activation
|
||||
self.dropout = torch.nn.Dropout(dropout_rate)
|
||||
self.w_2 = torch.nn.Linear(hidden_units, idim)
|
||||
|
||||
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
||||
"""Forward function.
|
||||
|
||||
Args:
|
||||
xs: input tensor (B, L, D)
|
||||
Returns:
|
||||
output tensor, (B, L, D)
|
||||
"""
|
||||
return self.w_2(self.dropout(self.activation(self.w_1(xs))))
|
||||
|
||||
|
||||
class MoEFFNLayer(torch.nn.Module):
|
||||
"""
|
||||
Mixture of expert with Positionwise feed forward layer
|
||||
See also figure 1 in https://arxiv.org/pdf/2305.15663.pdf
|
||||
The output dim is same with the input dim.
|
||||
|
||||
Modified from https://github.com/Lightning-AI/lit-gpt/pull/823
|
||||
https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219
|
||||
Args:
|
||||
n_expert: number of expert.
|
||||
n_expert_per_token: The actual number of experts used for each frame
|
||||
idim (int): Input dimenstion.
|
||||
hidden_units (int): The number of hidden units.
|
||||
dropout_rate (float): Dropout rate.
|
||||
activation (torch.nn.Module): Activation function
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_expert: int,
|
||||
n_expert_per_token: int,
|
||||
idim: int,
|
||||
hidden_units: int,
|
||||
dropout_rate: float,
|
||||
activation: torch.nn.Module = torch.nn.ReLU(),
|
||||
):
|
||||
super(MoEFFNLayer, self).__init__()
|
||||
self.gate = torch.nn.Linear(idim, n_expert, bias=False)
|
||||
self.experts = torch.nn.ModuleList(
|
||||
PositionwiseFeedForward(idim, hidden_units, dropout_rate,
|
||||
activation) for _ in range(n_expert))
|
||||
self.n_expert_per_token = n_expert_per_token
|
||||
|
||||
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
||||
"""Foward function.
|
||||
Args:
|
||||
xs: input tensor (B, L, D)
|
||||
Returns:
|
||||
output tensor, (B, L, D)
|
||||
|
||||
"""
|
||||
B, L, D = xs.size(
|
||||
) # batch size, sequence length, embedding dimension (idim)
|
||||
xs = xs.view(-1, D) # (B*L, D)
|
||||
router = self.gate(xs) # (B*L, n_expert)
|
||||
logits, indices = torch.topk(
|
||||
router, self.n_expert_per_token
|
||||
) # probs:(B*L, n_expert), indices: (B*L, n_expert)
|
||||
weights = torch.nn.functional.softmax(
|
||||
logits, dim=1,
|
||||
dtype=torch.float).to(dtype=xs.dtype) # (B*L, n_expert_per_token)
|
||||
output = torch.zeros_like(xs) # (B*L, D)
|
||||
for i, expert in enumerate(self.experts):
|
||||
mask = indices == i
|
||||
batch_idx, ith_expert = torch.where(mask)
|
||||
output[batch_idx] += weights[batch_idx, ith_expert, None] * expert(
|
||||
xs[batch_idx])
|
||||
return output.view(B, L, D)
|
||||
383
cosyvoice/transformer/subsampling.py
Normal file
383
cosyvoice/transformer/subsampling.py
Normal file
@@ -0,0 +1,383 @@
|
||||
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
||||
# 2024 Alibaba Inc (Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||
"""Subsampling layer definition."""
|
||||
|
||||
from typing import Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class BaseSubsampling(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.right_context = 0
|
||||
self.subsampling_rate = 1
|
||||
|
||||
def position_encoding(self, offset: Union[int, torch.Tensor],
|
||||
size: int) -> torch.Tensor:
|
||||
return self.pos_enc.position_encoding(offset, size)
|
||||
|
||||
|
||||
class EmbedinigNoSubsampling(BaseSubsampling):
|
||||
"""Embedding input without subsampling
|
||||
"""
|
||||
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
super().__init__()
|
||||
self.embed = torch.nn.Embedding(idim, odim)
|
||||
self.pos_enc = pos_enc_class
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Input x.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: linear input tensor (#batch, time', odim),
|
||||
where time' = time .
|
||||
torch.Tensor: linear input mask (#batch, 1, time'),
|
||||
where time' = time .
|
||||
|
||||
"""
|
||||
x = self.embed(x)
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask
|
||||
|
||||
|
||||
class LinearNoSubsampling(BaseSubsampling):
|
||||
"""Linear transform the input without subsampling
|
||||
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an linear object."""
|
||||
super().__init__()
|
||||
self.out = torch.nn.Sequential(
|
||||
torch.nn.Linear(idim, odim),
|
||||
torch.nn.LayerNorm(odim, eps=1e-5),
|
||||
torch.nn.Dropout(dropout_rate),
|
||||
)
|
||||
self.pos_enc = pos_enc_class
|
||||
self.right_context = 0
|
||||
self.subsampling_rate = 1
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Input x.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: linear input tensor (#batch, time', odim),
|
||||
where time' = time .
|
||||
torch.Tensor: linear input mask (#batch, 1, time'),
|
||||
where time' = time .
|
||||
|
||||
"""
|
||||
x = self.out(x)
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask
|
||||
|
||||
|
||||
class Conv1dSubsampling2(BaseSubsampling):
|
||||
"""Convolutional 1D subsampling (to 1/2 length).
|
||||
It is designed for Whisper, ref:
|
||||
https://github.com/openai/whisper/blob/main/whisper/model.py
|
||||
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an Conv1dSubsampling2 object."""
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Sequential(
|
||||
torch.nn.Conv1d(idim, odim, kernel_size=3, padding=1),
|
||||
torch.nn.GELU(),
|
||||
torch.nn.Conv1d(odim, odim, kernel_size=3, stride=2, padding=1),
|
||||
torch.nn.GELU(),
|
||||
)
|
||||
self.pos_enc = pos_enc_class
|
||||
# The right context for every conv layer is computed by:
|
||||
# (kernel_size - 1) * frame_rate_of_this_layer
|
||||
self.subsampling_rate = 2
|
||||
# 4 = (3 - 1) * 1 + (3 - 1) * 1
|
||||
self.right_context = 4
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Subsample x.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
||||
where time' = time // 2.
|
||||
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
||||
where time' = time // 2.
|
||||
torch.Tensor: positional encoding
|
||||
|
||||
"""
|
||||
time = x.size(1)
|
||||
x = x.transpose(1, 2) # (b, f, t)
|
||||
x = self.conv(x)
|
||||
x = x.transpose(1, 2) # (b, t, f)
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask[:, :, (time + 1) % 2::2]
|
||||
|
||||
|
||||
class Conv2dSubsampling4(BaseSubsampling):
|
||||
"""Convolutional 2D subsampling (to 1/4 length).
|
||||
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an Conv2dSubsampling4 object."""
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Sequential(
|
||||
torch.nn.Conv2d(1, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Conv2d(odim, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
)
|
||||
self.out = torch.nn.Sequential(
|
||||
torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
|
||||
self.pos_enc = pos_enc_class
|
||||
# The right context for every conv layer is computed by:
|
||||
# (kernel_size - 1) * frame_rate_of_this_layer
|
||||
self.subsampling_rate = 4
|
||||
# 6 = (3 - 1) * 1 + (3 - 1) * 2
|
||||
self.right_context = 6
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Subsample x.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
||||
where time' = time // 4.
|
||||
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
||||
where time' = time // 4.
|
||||
torch.Tensor: positional encoding
|
||||
|
||||
"""
|
||||
x = x.unsqueeze(1) # (b, c=1, t, f)
|
||||
x = self.conv(x)
|
||||
b, c, t, f = x.size()
|
||||
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2]
|
||||
|
||||
|
||||
class Conv2dSubsampling6(BaseSubsampling):
|
||||
"""Convolutional 2D subsampling (to 1/6 length).
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
pos_enc (torch.nn.Module): Custom position encoding layer.
|
||||
"""
|
||||
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an Conv2dSubsampling6 object."""
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Sequential(
|
||||
torch.nn.Conv2d(1, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Conv2d(odim, odim, 5, 3),
|
||||
torch.nn.ReLU(),
|
||||
)
|
||||
self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3),
|
||||
odim)
|
||||
self.pos_enc = pos_enc_class
|
||||
# 10 = (3 - 1) * 1 + (5 - 1) * 2
|
||||
self.subsampling_rate = 6
|
||||
self.right_context = 10
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Subsample x.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
||||
where time' = time // 6.
|
||||
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
||||
where time' = time // 6.
|
||||
torch.Tensor: positional encoding
|
||||
"""
|
||||
x = x.unsqueeze(1) # (b, c, t, f)
|
||||
x = self.conv(x)
|
||||
b, c, t, f = x.size()
|
||||
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3]
|
||||
|
||||
|
||||
class Conv2dSubsampling8(BaseSubsampling):
|
||||
"""Convolutional 2D subsampling (to 1/8 length).
|
||||
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an Conv2dSubsampling8 object."""
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Sequential(
|
||||
torch.nn.Conv2d(1, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Conv2d(odim, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Conv2d(odim, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
)
|
||||
self.linear = torch.nn.Linear(
|
||||
odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim)
|
||||
self.pos_enc = pos_enc_class
|
||||
self.subsampling_rate = 8
|
||||
# 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4
|
||||
self.right_context = 14
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Subsample x.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
||||
where time' = time // 8.
|
||||
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
||||
where time' = time // 8.
|
||||
torch.Tensor: positional encoding
|
||||
"""
|
||||
x = x.unsqueeze(1) # (b, c, t, f)
|
||||
x = self.conv(x)
|
||||
b, c, t, f = x.size()
|
||||
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2]
|
||||
|
||||
|
||||
class LegacyLinearNoSubsampling(BaseSubsampling):
|
||||
"""Linear transform the input without subsampling
|
||||
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an linear object."""
|
||||
super().__init__()
|
||||
self.out = torch.nn.Sequential(
|
||||
torch.nn.Linear(idim, odim),
|
||||
torch.nn.LayerNorm(odim, eps=1e-5),
|
||||
torch.nn.Dropout(dropout_rate),
|
||||
torch.nn.ReLU(),
|
||||
)
|
||||
self.pos_enc = pos_enc_class
|
||||
self.right_context = 0
|
||||
self.subsampling_rate = 1
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Input x.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: linear input tensor (#batch, time', odim),
|
||||
where time' = time .
|
||||
torch.Tensor: linear input mask (#batch, 1, time'),
|
||||
where time' = time .
|
||||
|
||||
"""
|
||||
x = self.out(x)
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask
|
||||
0
cosyvoice/utils/__init__.py
Normal file
0
cosyvoice/utils/__init__.py
Normal file
70
cosyvoice/utils/class_utils.py
Normal file
70
cosyvoice/utils/class_utils.py
Normal file
@@ -0,0 +1,70 @@
|
||||
# Copyright [2023-11-28] <sxc19@mails.tsinghua.edu.cn, Xingchen Song>
|
||||
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
|
||||
from cosyvoice.transformer.activation import Swish
|
||||
from cosyvoice.transformer.subsampling import (
|
||||
LinearNoSubsampling,
|
||||
EmbedinigNoSubsampling,
|
||||
Conv1dSubsampling2,
|
||||
Conv2dSubsampling4,
|
||||
Conv2dSubsampling6,
|
||||
Conv2dSubsampling8,
|
||||
)
|
||||
from cosyvoice.transformer.embedding import (PositionalEncoding,
|
||||
RelPositionalEncoding,
|
||||
WhisperPositionalEncoding,
|
||||
LearnablePositionalEncoding,
|
||||
NoPositionalEncoding)
|
||||
from cosyvoice.transformer.attention import (MultiHeadedAttention,
|
||||
RelPositionMultiHeadedAttention)
|
||||
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
|
||||
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
|
||||
|
||||
|
||||
COSYVOICE_ACTIVATION_CLASSES = {
|
||||
"hardtanh": torch.nn.Hardtanh,
|
||||
"tanh": torch.nn.Tanh,
|
||||
"relu": torch.nn.ReLU,
|
||||
"selu": torch.nn.SELU,
|
||||
"swish": getattr(torch.nn, "SiLU", Swish),
|
||||
"gelu": torch.nn.GELU,
|
||||
}
|
||||
|
||||
COSYVOICE_SUBSAMPLE_CLASSES = {
|
||||
"linear": LinearNoSubsampling,
|
||||
"linear_legacy": LegacyLinearNoSubsampling,
|
||||
"embed": EmbedinigNoSubsampling,
|
||||
"conv1d2": Conv1dSubsampling2,
|
||||
"conv2d": Conv2dSubsampling4,
|
||||
"conv2d6": Conv2dSubsampling6,
|
||||
"conv2d8": Conv2dSubsampling8,
|
||||
'paraformer_dummy': torch.nn.Identity
|
||||
}
|
||||
|
||||
COSYVOICE_EMB_CLASSES = {
|
||||
"embed": PositionalEncoding,
|
||||
"abs_pos": PositionalEncoding,
|
||||
"rel_pos": RelPositionalEncoding,
|
||||
"rel_pos_espnet": EspnetRelPositionalEncoding,
|
||||
"no_pos": NoPositionalEncoding,
|
||||
"abs_pos_whisper": WhisperPositionalEncoding,
|
||||
"embed_learnable_pe": LearnablePositionalEncoding,
|
||||
}
|
||||
|
||||
COSYVOICE_ATTENTION_CLASSES = {
|
||||
"selfattn": MultiHeadedAttention,
|
||||
"rel_selfattn": RelPositionMultiHeadedAttention,
|
||||
}
|
||||
93
cosyvoice/utils/common.py
Normal file
93
cosyvoice/utils/common.py
Normal file
@@ -0,0 +1,93 @@
|
||||
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
||||
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||
"""Unility functions for Transformer."""
|
||||
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
|
||||
IGNORE_ID = -1
|
||||
|
||||
|
||||
def pad_list(xs: List[torch.Tensor], pad_value: int):
|
||||
"""Perform padding for the list of tensors.
|
||||
|
||||
Args:
|
||||
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
|
||||
pad_value (float): Value for padding.
|
||||
|
||||
Returns:
|
||||
Tensor: Padded tensor (B, Tmax, `*`).
|
||||
|
||||
Examples:
|
||||
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
|
||||
>>> x
|
||||
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
|
||||
>>> pad_list(x, 0)
|
||||
tensor([[1., 1., 1., 1.],
|
||||
[1., 1., 0., 0.],
|
||||
[1., 0., 0., 0.]])
|
||||
|
||||
"""
|
||||
max_len = max([len(item) for item in xs])
|
||||
batchs = len(xs)
|
||||
ndim = xs[0].ndim
|
||||
if ndim == 1:
|
||||
pad_res = torch.zeros(batchs,
|
||||
max_len,
|
||||
dtype=xs[0].dtype,
|
||||
device=xs[0].device)
|
||||
elif ndim == 2:
|
||||
pad_res = torch.zeros(batchs,
|
||||
max_len,
|
||||
xs[0].shape[1],
|
||||
dtype=xs[0].dtype,
|
||||
device=xs[0].device)
|
||||
elif ndim == 3:
|
||||
pad_res = torch.zeros(batchs,
|
||||
max_len,
|
||||
xs[0].shape[1],
|
||||
xs[0].shape[2],
|
||||
dtype=xs[0].dtype,
|
||||
device=xs[0].device)
|
||||
else:
|
||||
raise ValueError(f"Unsupported ndim: {ndim}")
|
||||
pad_res.fill_(pad_value)
|
||||
for i in range(batchs):
|
||||
pad_res[i, :len(xs[i])] = xs[i]
|
||||
return pad_res
|
||||
|
||||
|
||||
def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor,
|
||||
ignore_label: int) -> torch.Tensor:
|
||||
"""Calculate accuracy.
|
||||
|
||||
Args:
|
||||
pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
|
||||
pad_targets (LongTensor): Target label tensors (B, Lmax).
|
||||
ignore_label (int): Ignore label id.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Accuracy value (0.0 - 1.0).
|
||||
|
||||
"""
|
||||
pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1),
|
||||
pad_outputs.size(1)).argmax(2)
|
||||
mask = pad_targets != ignore_label
|
||||
numerator = torch.sum(
|
||||
pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
|
||||
denominator = torch.sum(mask)
|
||||
return (numerator / denominator).detach()
|
||||
110
cosyvoice/utils/executor.py
Normal file
110
cosyvoice/utils/executor.py
Normal file
@@ -0,0 +1,110 @@
|
||||
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
||||
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
from contextlib import nullcontext
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
from cosyvoice.utils.train_utils import update_parameter_and_lr, log_per_step, log_per_save, batch_forward, batch_backward, save_model, cosyvoice_join
|
||||
|
||||
|
||||
class Executor:
|
||||
|
||||
def __init__(self):
|
||||
self.step = 0
|
||||
self.epoch = 0
|
||||
self.rank = int(os.environ.get('RANK', 0))
|
||||
self.device = torch.device('cuda:{}'.format(self.rank))
|
||||
|
||||
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join):
|
||||
''' Train one epoch
|
||||
'''
|
||||
|
||||
lr = optimizer.param_groups[0]['lr']
|
||||
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
||||
logging.info('using accumulate grad, new batch size is {} times'
|
||||
' larger than before'.format(info_dict['accum_grad']))
|
||||
# A context manager to be used in conjunction with an instance of
|
||||
# torch.nn.parallel.DistributedDataParallel to be able to train
|
||||
# with uneven inputs across participating processes.
|
||||
model.train()
|
||||
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
||||
with model_context():
|
||||
for batch_idx, batch_dict in enumerate(train_data_loader):
|
||||
info_dict["tag"] = "TRAIN"
|
||||
info_dict["step"] = self.step
|
||||
info_dict["epoch"] = self.epoch
|
||||
info_dict["batch_idx"] = batch_idx
|
||||
if cosyvoice_join(group_join, info_dict):
|
||||
break
|
||||
|
||||
# Disable gradient synchronizations across DDP processes.
|
||||
# Within this context, gradients will be accumulated on module
|
||||
# variables, which will later be synchronized.
|
||||
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
||||
context = model.no_sync
|
||||
# Used for single gpu training and DDP gradient synchronization
|
||||
# processes.
|
||||
else:
|
||||
context = nullcontext
|
||||
|
||||
with context():
|
||||
info_dict = batch_forward(model, batch_dict, info_dict)
|
||||
info_dict = batch_backward(model, info_dict)
|
||||
|
||||
info_dict = update_parameter_and_lr(model, optimizer, scheduler, info_dict)
|
||||
log_per_step(writer, info_dict)
|
||||
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
||||
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||
dist.barrier()
|
||||
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
||||
model.train()
|
||||
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||
self.step += 1
|
||||
dist.barrier()
|
||||
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
|
||||
|
||||
@torch.inference_mode()
|
||||
def cv(self, model, cv_data_loader, writer, info_dict, on_batch_end=True):
|
||||
''' Cross validation on
|
||||
'''
|
||||
logging.info('Epoch {} Step {} on_batch_end {} CV rank {}'.format(self.epoch, self.step + 1, on_batch_end, self.rank))
|
||||
model.eval()
|
||||
total_num_utts, total_loss_dict = 0, {} # avoid division by 0
|
||||
for batch_idx, batch_dict in enumerate(cv_data_loader):
|
||||
info_dict["tag"] = "CV"
|
||||
info_dict["step"] = self.step
|
||||
info_dict["epoch"] = self.epoch
|
||||
info_dict["batch_idx"] = batch_idx
|
||||
|
||||
num_utts = len(batch_dict["utts"])
|
||||
total_num_utts += num_utts
|
||||
|
||||
info_dict = batch_forward(model, batch_dict, info_dict)
|
||||
|
||||
for k, v in info_dict['loss_dict'].items():
|
||||
if k not in total_loss_dict:
|
||||
total_loss_dict[k] = []
|
||||
total_loss_dict[k].append(v.item() * num_utts)
|
||||
log_per_step(None, info_dict)
|
||||
for k, v in total_loss_dict.items():
|
||||
total_loss_dict[k] = sum(v) / total_num_utts
|
||||
info_dict['loss_dict'] = total_loss_dict
|
||||
log_per_save(writer, info_dict)
|
||||
model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
|
||||
save_model(model, model_name, info_dict)
|
||||
41
cosyvoice/utils/file_utils.py
Normal file
41
cosyvoice/utils/file_utils.py
Normal file
@@ -0,0 +1,41 @@
|
||||
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
||||
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import torchaudio
|
||||
|
||||
|
||||
def read_lists(list_file):
|
||||
lists = []
|
||||
with open(list_file, 'r', encoding='utf8') as fin:
|
||||
for line in fin:
|
||||
lists.append(line.strip())
|
||||
return lists
|
||||
|
||||
def read_json_lists(list_file):
|
||||
lists = read_lists(list_file)
|
||||
results = {}
|
||||
for fn in lists:
|
||||
with open(fn, 'r', encoding='utf8') as fin:
|
||||
results.update(json.load(fin))
|
||||
return results
|
||||
|
||||
def load_wav(wav, target_sr):
|
||||
speech, sample_rate = torchaudio.load(wav)
|
||||
speech = speech.mean(dim=0, keepdim=True)
|
||||
if sample_rate != target_sr:
|
||||
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
|
||||
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
|
||||
return speech
|
||||
120
cosyvoice/utils/frontend_utils.py
Normal file
120
cosyvoice/utils/frontend_utils.py
Normal file
@@ -0,0 +1,120 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import re
|
||||
chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]+')
|
||||
|
||||
# whether contain chinese character
|
||||
def contains_chinese(text):
|
||||
return bool(chinese_char_pattern.search(text))
|
||||
|
||||
|
||||
# replace special symbol
|
||||
def replace_corner_mark(text):
|
||||
text = text.replace('²', '平方')
|
||||
text = text.replace('³', '立方')
|
||||
return text
|
||||
|
||||
|
||||
# remove meaningless symbol
|
||||
def remove_bracket(text):
|
||||
text = text.replace('(', '').replace(')', '')
|
||||
text = text.replace('【', '').replace('】', '')
|
||||
text = text.replace('`', '').replace('`', '')
|
||||
text = text.replace("——", " ")
|
||||
return text
|
||||
|
||||
|
||||
# spell Arabic numerals
|
||||
def spell_out_number(text: str, inflect_parser):
|
||||
new_text = []
|
||||
st = None
|
||||
for i, c in enumerate(text):
|
||||
if not c.isdigit():
|
||||
if st is not None:
|
||||
num_str = inflect_parser.number_to_words(text[st: i])
|
||||
new_text.append(num_str)
|
||||
st = None
|
||||
new_text.append(c)
|
||||
else:
|
||||
if st is None:
|
||||
st = i
|
||||
if st is not None and st < len(text):
|
||||
num_str = inflect_parser.number_to_words(text[st:])
|
||||
new_text.append(num_str)
|
||||
return ''.join(new_text)
|
||||
|
||||
|
||||
# split paragrah logic:
|
||||
# 1. per sentence max len token_max_n, min len token_min_n, merge if last sentence len less than merge_len
|
||||
# 2. cal sentence len according to lang
|
||||
# 3. split sentence according to puncatation
|
||||
def split_paragraph(text: str, tokenize, lang="zh", token_max_n=80, token_min_n=60, merge_len=20, comma_split=False):
|
||||
def calc_utt_length(_text: str):
|
||||
if lang == "zh":
|
||||
return len(_text)
|
||||
else:
|
||||
return len(tokenize(_text))
|
||||
|
||||
def should_merge(_text: str):
|
||||
if lang == "zh":
|
||||
return len(_text) < merge_len
|
||||
else:
|
||||
return len(tokenize(_text)) < merge_len
|
||||
|
||||
if lang == "zh":
|
||||
pounc = ['。', '?', '!', ';', ':', '.', '?', '!', ';']
|
||||
else:
|
||||
pounc = ['.', '?', '!', ';', ':']
|
||||
if comma_split:
|
||||
pounc.extend([',', ','])
|
||||
st = 0
|
||||
utts = []
|
||||
for i, c in enumerate(text):
|
||||
if c in pounc:
|
||||
if len(text[st: i]) > 0:
|
||||
utts.append(text[st: i] + c)
|
||||
if i + 1 < len(text) and text[i + 1] in ['"', '”']:
|
||||
tmp = utts.pop(-1)
|
||||
utts.append(tmp + text[i + 1])
|
||||
st = i + 2
|
||||
else:
|
||||
st = i + 1
|
||||
final_utts = []
|
||||
cur_utt = ""
|
||||
for utt in utts:
|
||||
if calc_utt_length(cur_utt + utt) > token_max_n and calc_utt_length(cur_utt) > token_min_n:
|
||||
final_utts.append(cur_utt)
|
||||
cur_utt = ""
|
||||
cur_utt = cur_utt + utt
|
||||
if len(cur_utt) > 0:
|
||||
if should_merge(cur_utt) and len(final_utts) != 0:
|
||||
final_utts[-1] = final_utts[-1] + cur_utt
|
||||
else:
|
||||
final_utts.append(cur_utt)
|
||||
|
||||
return final_utts
|
||||
|
||||
|
||||
# remove blank between chinese character
|
||||
def replace_blank(text: str):
|
||||
out_str = []
|
||||
for i, c in enumerate(text):
|
||||
if c == " ":
|
||||
if ((text[i + 1].isascii() and text[i + 1] != " ") and
|
||||
(text[i - 1].isascii() and text[i - 1] != " ")):
|
||||
out_str.append(c)
|
||||
else:
|
||||
out_str.append(c)
|
||||
return "".join(out_str)
|
||||
227
cosyvoice/utils/mask.py
Normal file
227
cosyvoice/utils/mask.py
Normal file
@@ -0,0 +1,227 @@
|
||||
# Copyright (c) 2019 Shigeki Karita
|
||||
# 2020 Mobvoi Inc (Binbin Zhang)
|
||||
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
'''
|
||||
def subsequent_mask(
|
||||
size: int,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> torch.Tensor:
|
||||
"""Create mask for subsequent steps (size, size).
|
||||
|
||||
This mask is used only in decoder which works in an auto-regressive mode.
|
||||
This means the current step could only do attention with its left steps.
|
||||
|
||||
In encoder, fully attention is used when streaming is not necessary and
|
||||
the sequence is not long. In this case, no attention mask is needed.
|
||||
|
||||
When streaming is need, chunk-based attention is used in encoder. See
|
||||
subsequent_chunk_mask for the chunk-based attention mask.
|
||||
|
||||
Args:
|
||||
size (int): size of mask
|
||||
str device (str): "cpu" or "cuda" or torch.Tensor.device
|
||||
dtype (torch.device): result dtype
|
||||
|
||||
Returns:
|
||||
torch.Tensor: mask
|
||||
|
||||
Examples:
|
||||
>>> subsequent_mask(3)
|
||||
[[1, 0, 0],
|
||||
[1, 1, 0],
|
||||
[1, 1, 1]]
|
||||
"""
|
||||
ret = torch.ones(size, size, device=device, dtype=torch.bool)
|
||||
return torch.tril(ret)
|
||||
'''
|
||||
|
||||
|
||||
def subsequent_mask(
|
||||
size: int,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> torch.Tensor:
|
||||
"""Create mask for subsequent steps (size, size).
|
||||
|
||||
This mask is used only in decoder which works in an auto-regressive mode.
|
||||
This means the current step could only do attention with its left steps.
|
||||
|
||||
In encoder, fully attention is used when streaming is not necessary and
|
||||
the sequence is not long. In this case, no attention mask is needed.
|
||||
|
||||
When streaming is need, chunk-based attention is used in encoder. See
|
||||
subsequent_chunk_mask for the chunk-based attention mask.
|
||||
|
||||
Args:
|
||||
size (int): size of mask
|
||||
str device (str): "cpu" or "cuda" or torch.Tensor.device
|
||||
dtype (torch.device): result dtype
|
||||
|
||||
Returns:
|
||||
torch.Tensor: mask
|
||||
|
||||
Examples:
|
||||
>>> subsequent_mask(3)
|
||||
[[1, 0, 0],
|
||||
[1, 1, 0],
|
||||
[1, 1, 1]]
|
||||
"""
|
||||
arange = torch.arange(size, device=device)
|
||||
mask = arange.expand(size, size)
|
||||
arange = arange.unsqueeze(-1)
|
||||
mask = mask <= arange
|
||||
return mask
|
||||
|
||||
|
||||
def subsequent_chunk_mask(
|
||||
size: int,
|
||||
chunk_size: int,
|
||||
num_left_chunks: int = -1,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> torch.Tensor:
|
||||
"""Create mask for subsequent steps (size, size) with chunk size,
|
||||
this is for streaming encoder
|
||||
|
||||
Args:
|
||||
size (int): size of mask
|
||||
chunk_size (int): size of chunk
|
||||
num_left_chunks (int): number of left chunks
|
||||
<0: use full chunk
|
||||
>=0: use num_left_chunks
|
||||
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
|
||||
|
||||
Returns:
|
||||
torch.Tensor: mask
|
||||
|
||||
Examples:
|
||||
>>> subsequent_chunk_mask(4, 2)
|
||||
[[1, 1, 0, 0],
|
||||
[1, 1, 0, 0],
|
||||
[1, 1, 1, 1],
|
||||
[1, 1, 1, 1]]
|
||||
"""
|
||||
ret = torch.zeros(size, size, device=device, dtype=torch.bool)
|
||||
for i in range(size):
|
||||
if num_left_chunks < 0:
|
||||
start = 0
|
||||
else:
|
||||
start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
|
||||
ending = min((i // chunk_size + 1) * chunk_size, size)
|
||||
ret[i, start:ending] = True
|
||||
return ret
|
||||
|
||||
|
||||
def add_optional_chunk_mask(xs: torch.Tensor,
|
||||
masks: torch.Tensor,
|
||||
use_dynamic_chunk: bool,
|
||||
use_dynamic_left_chunk: bool,
|
||||
decoding_chunk_size: int,
|
||||
static_chunk_size: int,
|
||||
num_decoding_left_chunks: int,
|
||||
enable_full_context: bool = True):
|
||||
""" Apply optional mask for encoder.
|
||||
|
||||
Args:
|
||||
xs (torch.Tensor): padded input, (B, L, D), L for max length
|
||||
mask (torch.Tensor): mask for xs, (B, 1, L)
|
||||
use_dynamic_chunk (bool): whether to use dynamic chunk or not
|
||||
use_dynamic_left_chunk (bool): whether to use dynamic left chunk for
|
||||
training.
|
||||
decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's
|
||||
0: default for training, use random dynamic chunk.
|
||||
<0: for decoding, use full chunk.
|
||||
>0: for decoding, use fixed chunk size as set.
|
||||
static_chunk_size (int): chunk size for static chunk training/decoding
|
||||
if it's greater than 0, if use_dynamic_chunk is true,
|
||||
this parameter will be ignored
|
||||
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
||||
the chunk size is decoding_chunk_size.
|
||||
>=0: use num_decoding_left_chunks
|
||||
<0: use all left chunks
|
||||
enable_full_context (bool):
|
||||
True: chunk size is either [1, 25] or full context(max_len)
|
||||
False: chunk size ~ U[1, 25]
|
||||
|
||||
Returns:
|
||||
torch.Tensor: chunk mask of the input xs.
|
||||
"""
|
||||
# Whether to use chunk mask or not
|
||||
if use_dynamic_chunk:
|
||||
max_len = xs.size(1)
|
||||
if decoding_chunk_size < 0:
|
||||
chunk_size = max_len
|
||||
num_left_chunks = -1
|
||||
elif decoding_chunk_size > 0:
|
||||
chunk_size = decoding_chunk_size
|
||||
num_left_chunks = num_decoding_left_chunks
|
||||
else:
|
||||
# chunk size is either [1, 25] or full context(max_len).
|
||||
# Since we use 4 times subsampling and allow up to 1s(100 frames)
|
||||
# delay, the maximum frame is 100 / 4 = 25.
|
||||
chunk_size = torch.randint(1, max_len, (1, )).item()
|
||||
num_left_chunks = -1
|
||||
if chunk_size > max_len // 2 and enable_full_context:
|
||||
chunk_size = max_len
|
||||
else:
|
||||
chunk_size = chunk_size % 25 + 1
|
||||
if use_dynamic_left_chunk:
|
||||
max_left_chunks = (max_len - 1) // chunk_size
|
||||
num_left_chunks = torch.randint(0, max_left_chunks,
|
||||
(1, )).item()
|
||||
chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size,
|
||||
num_left_chunks,
|
||||
xs.device) # (L, L)
|
||||
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
|
||||
chunk_masks = masks & chunk_masks # (B, L, L)
|
||||
elif static_chunk_size > 0:
|
||||
num_left_chunks = num_decoding_left_chunks
|
||||
chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size,
|
||||
num_left_chunks,
|
||||
xs.device) # (L, L)
|
||||
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
|
||||
chunk_masks = masks & chunk_masks # (B, L, L)
|
||||
else:
|
||||
chunk_masks = masks
|
||||
return chunk_masks
|
||||
|
||||
|
||||
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
||||
"""Make mask tensor containing indices of padded part.
|
||||
|
||||
See description of make_non_pad_mask.
|
||||
|
||||
Args:
|
||||
lengths (torch.Tensor): Batch of lengths (B,).
|
||||
Returns:
|
||||
torch.Tensor: Mask tensor containing indices of padded part.
|
||||
|
||||
Examples:
|
||||
>>> lengths = [5, 3, 2]
|
||||
>>> make_pad_mask(lengths)
|
||||
masks = [[0, 0, 0, 0 ,0],
|
||||
[0, 0, 0, 1, 1],
|
||||
[0, 0, 1, 1, 1]]
|
||||
"""
|
||||
batch_size = lengths.size(0)
|
||||
max_len = max_len if max_len > 0 else lengths.max().item()
|
||||
seq_range = torch.arange(0,
|
||||
max_len,
|
||||
dtype=torch.int64,
|
||||
device=lengths.device)
|
||||
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
|
||||
seq_length_expand = lengths.unsqueeze(-1)
|
||||
mask = seq_range_expand >= seq_length_expand
|
||||
return mask
|
||||
717
cosyvoice/utils/scheduler.py
Normal file
717
cosyvoice/utils/scheduler.py
Normal file
@@ -0,0 +1,717 @@
|
||||
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
||||
# 2022 Ximalaya Inc (Yuguang Yang)
|
||||
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||
# NeMo(https://github.com/NVIDIA/NeMo)
|
||||
|
||||
from typing import Union
|
||||
|
||||
import math
|
||||
import warnings
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import _LRScheduler
|
||||
|
||||
|
||||
class WarmupLR(_LRScheduler):
|
||||
"""The WarmupLR scheduler
|
||||
|
||||
This scheduler is almost same as NoamLR Scheduler except for following
|
||||
difference:
|
||||
|
||||
NoamLR:
|
||||
lr = optimizer.lr * model_size ** -0.5
|
||||
* min(step ** -0.5, step * warmup_step ** -1.5)
|
||||
WarmupLR:
|
||||
lr = optimizer.lr * warmup_step ** 0.5
|
||||
* min(step ** -0.5, step * warmup_step ** -1.5)
|
||||
|
||||
Note that the maximum lr equals to optimizer.lr in this scheduler.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
warmup_steps: Union[int, float] = 25000,
|
||||
last_epoch: int = -1,
|
||||
):
|
||||
self.warmup_steps = warmup_steps
|
||||
|
||||
# __init__() must be invoked before setting field
|
||||
# because step() is also invoked in __init__()
|
||||
super().__init__(optimizer, last_epoch)
|
||||
|
||||
def __repr__(self):
|
||||
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
|
||||
|
||||
def get_lr(self):
|
||||
step_num = self.last_epoch + 1
|
||||
if self.warmup_steps == 0:
|
||||
return [lr * step_num**-0.5 for lr in self.base_lrs]
|
||||
else:
|
||||
return [
|
||||
lr * self.warmup_steps**0.5 *
|
||||
min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
|
||||
for lr in self.base_lrs
|
||||
]
|
||||
|
||||
def set_step(self, step: int):
|
||||
self.last_epoch = step
|
||||
|
||||
|
||||
class WarmupPolicy(_LRScheduler):
|
||||
"""Adds warmup kwargs and warmup logic to lr policy.
|
||||
All arguments should be passed as kwargs for clarity,
|
||||
Args:
|
||||
warmup_steps: Number of training steps in warmup stage
|
||||
warmup_ratio: Ratio of warmup steps to total steps
|
||||
max_steps: Total number of steps while training or `None` for
|
||||
infinite training
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
optimizer,
|
||||
*,
|
||||
warmup_steps=None,
|
||||
warmup_ratio=None,
|
||||
max_steps=None,
|
||||
min_lr=0.0,
|
||||
last_epoch=-1):
|
||||
assert not (warmup_steps is not None and warmup_ratio is not None),\
|
||||
"Either use particular number of step or ratio"
|
||||
assert warmup_ratio is None or max_steps is not None, \
|
||||
"If there is a ratio, there should be a total steps"
|
||||
|
||||
# It is necessary to assign all attributes *before* __init__,
|
||||
# as class is wrapped by an inner class.
|
||||
self.max_steps = max_steps
|
||||
if warmup_steps is not None:
|
||||
self.warmup_steps = warmup_steps
|
||||
elif warmup_ratio is not None:
|
||||
self.warmup_steps = int(warmup_ratio * max_steps)
|
||||
else:
|
||||
self.warmup_steps = 0
|
||||
|
||||
self.min_lr = min_lr
|
||||
super().__init__(optimizer, last_epoch)
|
||||
|
||||
def get_lr(self):
|
||||
if not self._get_lr_called_within_step:
|
||||
warnings.warn(
|
||||
"To get the last learning rate computed "
|
||||
"by the scheduler, please use `get_last_lr()`.",
|
||||
UserWarning,
|
||||
stacklevel=2)
|
||||
|
||||
step = self.last_epoch
|
||||
|
||||
if step <= self.warmup_steps and self.warmup_steps > 0:
|
||||
return self._get_warmup_lr(step)
|
||||
|
||||
if step > self.max_steps:
|
||||
return [self.min_lr for _ in self.base_lrs]
|
||||
|
||||
return self._get_lr(step)
|
||||
|
||||
def _get_warmup_lr(self, step):
|
||||
lr_val = (step + 1) / (self.warmup_steps + 1)
|
||||
return [initial_lr * lr_val for initial_lr in self.base_lrs]
|
||||
|
||||
def _get_lr(self, step):
|
||||
"""Simple const lr policy"""
|
||||
return self.base_lrs
|
||||
|
||||
|
||||
class SquareRootConstantPolicy(_LRScheduler):
|
||||
"""Adds warmup kwargs and warmup logic to lr policy.
|
||||
All arguments should be passed as kwargs for clarity,
|
||||
Args:
|
||||
warmup_steps: Number of training steps in warmup stage
|
||||
warmup_ratio: Ratio of warmup steps to total steps
|
||||
max_steps: Total number of steps while training or `None` for
|
||||
infinite training
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
optimizer,
|
||||
*,
|
||||
constant_steps=None,
|
||||
constant_ratio=None,
|
||||
max_steps=None,
|
||||
min_lr=0.0,
|
||||
last_epoch=-1):
|
||||
assert not (constant_steps is not None
|
||||
and constant_ratio is not None), \
|
||||
"Either use particular number of step or ratio"
|
||||
assert constant_ratio is None or max_steps is not None, \
|
||||
"If there is a ratio, there should be a total steps"
|
||||
|
||||
# It is necessary to assign all attributes *before* __init__,
|
||||
# as class is wrapped by an inner class.
|
||||
self.max_steps = max_steps
|
||||
if constant_steps is not None:
|
||||
self.constant_steps = constant_steps
|
||||
elif constant_ratio is not None:
|
||||
self.constant_steps = int(constant_ratio * max_steps)
|
||||
else:
|
||||
self.constant_steps = 0
|
||||
|
||||
self.constant_lr = 1 / (constant_steps**0.5)
|
||||
self.min_lr = min_lr
|
||||
super().__init__(optimizer, last_epoch)
|
||||
|
||||
def get_lr(self):
|
||||
if not self._get_lr_called_within_step:
|
||||
warnings.warn(
|
||||
"To get the last learning rate computed "
|
||||
"by the scheduler, please use `get_last_lr()`.",
|
||||
UserWarning,
|
||||
stacklevel=2)
|
||||
|
||||
step = self.last_epoch
|
||||
|
||||
if step <= self.constant_steps:
|
||||
return [self.constant_lr for _ in self.base_lrs]
|
||||
|
||||
if step > self.max_steps:
|
||||
return [self.min_lr for _ in self.base_lrs]
|
||||
|
||||
return self._get_lr(step)
|
||||
|
||||
def _get_lr(self, step):
|
||||
"""Simple const lr policy"""
|
||||
return self.base_lrs
|
||||
|
||||
|
||||
class WarmupHoldPolicy(WarmupPolicy):
|
||||
"""Variant of WarmupPolicy which maintains high
|
||||
learning rate for a defined number of steps.
|
||||
All arguments should be passed as kwargs for clarity,
|
||||
Args:
|
||||
warmup_steps: Number of training steps in warmup stage
|
||||
warmup_ratio: Ratio of warmup steps to total steps
|
||||
hold_steps: Number of training steps to
|
||||
hold the learning rate after warm up
|
||||
hold_ratio: Ratio of hold steps to total steps
|
||||
max_steps: Total number of steps while training or `None` for
|
||||
infinite training
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
optimizer,
|
||||
*,
|
||||
warmup_steps=None,
|
||||
warmup_ratio=None,
|
||||
hold_steps=None,
|
||||
hold_ratio=None,
|
||||
max_steps=None,
|
||||
min_lr=0.0,
|
||||
last_epoch=-1,
|
||||
):
|
||||
assert not (hold_steps is not None and hold_ratio is not None), \
|
||||
"Either use particular number of step or ratio"
|
||||
assert hold_ratio is None or max_steps is not None, \
|
||||
"If there is a ratio, there should be a total steps"
|
||||
|
||||
self.min_lr = min_lr
|
||||
self._last_warmup_lr = 0.0
|
||||
|
||||
# Necessary to duplicate as class attributes are hidden in inner class
|
||||
self.max_steps = max_steps
|
||||
if warmup_steps is not None:
|
||||
self.warmup_steps = warmup_steps
|
||||
elif warmup_ratio is not None:
|
||||
self.warmup_steps = int(warmup_ratio * max_steps)
|
||||
else:
|
||||
self.warmup_steps = 0
|
||||
|
||||
if hold_steps is not None:
|
||||
self.hold_steps = hold_steps + self.warmup_steps
|
||||
elif hold_ratio is not None:
|
||||
self.hold_steps = int(hold_ratio * max_steps) + self.warmup_steps
|
||||
else:
|
||||
self.hold_steps = 0
|
||||
|
||||
super().__init__(
|
||||
optimizer,
|
||||
warmup_steps=warmup_steps,
|
||||
warmup_ratio=warmup_ratio,
|
||||
max_steps=max_steps,
|
||||
last_epoch=last_epoch,
|
||||
min_lr=min_lr,
|
||||
)
|
||||
|
||||
def get_lr(self):
|
||||
if not self._get_lr_called_within_step:
|
||||
warnings.warn(
|
||||
"To get the last learning rate computed by the scheduler,"
|
||||
" "
|
||||
"please use `get_last_lr()`.",
|
||||
UserWarning,
|
||||
stacklevel=2)
|
||||
|
||||
step = self.last_epoch
|
||||
|
||||
# Warmup phase
|
||||
if step <= self.warmup_steps and self.warmup_steps > 0:
|
||||
return self._get_warmup_lr(step)
|
||||
|
||||
# Hold phase
|
||||
if (step >= self.warmup_steps) and (step < self.hold_steps):
|
||||
return self.base_lrs
|
||||
|
||||
if step > self.max_steps:
|
||||
return [self.min_lr for _ in self.base_lrs]
|
||||
|
||||
return self._get_lr(step)
|
||||
|
||||
|
||||
class WarmupAnnealHoldPolicy(_LRScheduler):
|
||||
"""Adds warmup kwargs and warmup logic to lr policy.
|
||||
All arguments should be passed as kwargs for clarity,
|
||||
Args:
|
||||
warmup_steps: Number of training steps in warmup stage
|
||||
warmup_ratio: Ratio of warmup steps to total steps
|
||||
max_steps: Total number of steps while training or `None` for
|
||||
infinite training
|
||||
min_lr: Minimum lr to hold the learning rate after decay at.
|
||||
constant_steps: Number of steps to keep lr constant at.
|
||||
constant_ratio: Ratio of steps to keep lr constant.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
optimizer,
|
||||
*,
|
||||
warmup_steps=None,
|
||||
warmup_ratio=None,
|
||||
constant_steps=None,
|
||||
constant_ratio=None,
|
||||
max_steps=None,
|
||||
min_lr=0.0,
|
||||
last_epoch=-1,
|
||||
):
|
||||
assert not (warmup_steps is not None
|
||||
and warmup_ratio is not None), \
|
||||
"Either use particular number of step or ratio"
|
||||
assert not (constant_steps is not None
|
||||
and constant_ratio is not None), \
|
||||
"Either use constant_steps or constant_ratio"
|
||||
assert warmup_ratio is None or max_steps is not None, \
|
||||
"If there is a ratio, there should be a total steps"
|
||||
|
||||
# It is necessary to assign all attributes *before* __init__,
|
||||
# as class is wrapped by an inner class.
|
||||
self.max_steps = max_steps
|
||||
|
||||
if warmup_steps is not None:
|
||||
self.warmup_steps = warmup_steps
|
||||
elif warmup_ratio is not None:
|
||||
self.warmup_steps = int(warmup_ratio * max_steps)
|
||||
else:
|
||||
self.warmup_steps = 0
|
||||
|
||||
if constant_steps is not None:
|
||||
self.constant_steps = constant_steps
|
||||
elif constant_ratio is not None:
|
||||
self.constant_steps = int(constant_ratio * max_steps)
|
||||
else:
|
||||
self.constant_steps = 0
|
||||
|
||||
self.decay_steps = max_steps - (self.constant_steps +
|
||||
self.warmup_steps)
|
||||
|
||||
self.min_lr = min_lr
|
||||
super().__init__(optimizer, last_epoch)
|
||||
|
||||
def get_lr(self):
|
||||
if not self._get_lr_called_within_step:
|
||||
warnings.warn(
|
||||
"To get the last learning rate computed "
|
||||
"by the scheduler, please use `get_last_lr()`.",
|
||||
UserWarning,
|
||||
stacklevel=2)
|
||||
|
||||
step = self.last_epoch
|
||||
|
||||
# Warmup steps
|
||||
if self.warmup_steps > 0 and step <= self.warmup_steps:
|
||||
return self._get_warmup_lr(step)
|
||||
|
||||
# Constant steps after warmup and decay
|
||||
if self.constant_steps > 0 and (
|
||||
self.warmup_steps + self.decay_steps) < step <= self.max_steps:
|
||||
return self._get_constant_lr(step)
|
||||
|
||||
# Min lr after max steps of updates
|
||||
if step > self.max_steps:
|
||||
return [self.min_lr for _ in self.base_lrs]
|
||||
|
||||
return self._get_lr(step)
|
||||
|
||||
def _get_warmup_lr(self, step):
|
||||
lr_val = (step + 1) / (self.warmup_steps + 1)
|
||||
return [initial_lr * lr_val for initial_lr in self.base_lrs]
|
||||
|
||||
def _get_constant_lr(self, step):
|
||||
return [self.min_lr for _ in self.base_lrs]
|
||||
|
||||
def _get_lr(self, step):
|
||||
"""Simple const lr policy"""
|
||||
return self.base_lrs
|
||||
|
||||
|
||||
def _squareroot_annealing(initial_lr, step, max_steps, min_lr):
|
||||
mult = ((max_steps - step) / max_steps)**0.5
|
||||
out_lr = initial_lr * mult
|
||||
out_lr = max(out_lr, min_lr)
|
||||
return out_lr
|
||||
|
||||
|
||||
def _square_annealing(initial_lr, step, max_steps, min_lr):
|
||||
mult = ((max_steps - step) / max_steps)**2
|
||||
out_lr = initial_lr * mult
|
||||
out_lr = max(out_lr, min_lr)
|
||||
return out_lr
|
||||
|
||||
|
||||
def _cosine_annealing(initial_lr, step, max_steps, min_lr):
|
||||
mult = 0.5 * (1 + math.cos(math.pi * step / max_steps))
|
||||
out_lr = (initial_lr - min_lr) * mult + min_lr
|
||||
return out_lr
|
||||
|
||||
|
||||
def _linear_warmup_with_cosine_annealing(max_lr, warmup_steps, step,
|
||||
decay_steps, min_lr):
|
||||
assert max_lr > min_lr
|
||||
# Use linear warmup for the initial part.
|
||||
if warmup_steps > 0 and step <= warmup_steps:
|
||||
return max_lr * float(step) / float(warmup_steps)
|
||||
|
||||
# For any steps larger than `decay_steps`, use `min_lr`.
|
||||
if step > warmup_steps + decay_steps:
|
||||
return min_lr
|
||||
|
||||
# If we are done with the warmup period, use the decay style.
|
||||
num_steps_ = step - warmup_steps
|
||||
decay_steps_ = decay_steps
|
||||
decay_ratio = float(num_steps_) / float(decay_steps_)
|
||||
assert decay_ratio >= 0.0
|
||||
assert decay_ratio <= 1.0
|
||||
delta_lr = max_lr - min_lr
|
||||
|
||||
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
|
||||
|
||||
return min_lr + coeff * delta_lr
|
||||
|
||||
|
||||
def _poly_decay(initial_lr, step, decay_steps, power, min_lr, cycle):
|
||||
if cycle:
|
||||
multiplier = 1.0 if step == 0 else math.ceil(step / decay_steps)
|
||||
decay_steps *= multiplier
|
||||
else:
|
||||
step = min(step, decay_steps)
|
||||
p = step / decay_steps
|
||||
lr = (initial_lr - min_lr) * math.pow(1.0 - p, power)
|
||||
lr += min_lr
|
||||
return lr
|
||||
|
||||
|
||||
def _noam_hold_annealing(initial_lr, step, warmup_steps, hold_steps,
|
||||
decay_rate, min_lr):
|
||||
# hold_steps = total number of steps
|
||||
# to hold the LR, not the warmup + hold steps.
|
||||
T_warmup_decay = max(1, warmup_steps**decay_rate)
|
||||
T_hold_decay = max(1, (step - hold_steps)**decay_rate)
|
||||
lr = (initial_lr * T_warmup_decay) / T_hold_decay
|
||||
lr = max(lr, min_lr)
|
||||
return lr
|
||||
|
||||
|
||||
class SquareAnnealing(WarmupPolicy):
|
||||
|
||||
def __init__(self,
|
||||
optimizer,
|
||||
*,
|
||||
max_steps,
|
||||
min_lr=1e-5,
|
||||
last_epoch=-1,
|
||||
**kwargs):
|
||||
super().__init__(optimizer=optimizer,
|
||||
max_steps=max_steps,
|
||||
last_epoch=last_epoch,
|
||||
min_lr=min_lr,
|
||||
**kwargs)
|
||||
|
||||
def _get_lr(self, step):
|
||||
new_lrs = [
|
||||
_square_annealing(
|
||||
initial_lr=initial_lr,
|
||||
step=step - self.warmup_steps,
|
||||
max_steps=self.max_steps - self.warmup_steps,
|
||||
min_lr=self.min_lr,
|
||||
) for initial_lr in self.base_lrs
|
||||
]
|
||||
return new_lrs
|
||||
|
||||
|
||||
class SquareRootAnnealing(WarmupPolicy):
|
||||
|
||||
def __init__(self,
|
||||
optimizer,
|
||||
*,
|
||||
max_steps,
|
||||
min_lr=0,
|
||||
last_epoch=-1,
|
||||
**kwargs):
|
||||
super().__init__(optimizer=optimizer,
|
||||
max_steps=max_steps,
|
||||
last_epoch=last_epoch,
|
||||
min_lr=min_lr,
|
||||
**kwargs)
|
||||
|
||||
def _get_lr(self, step):
|
||||
new_lrs = [
|
||||
_squareroot_annealing(initial_lr=initial_lr,
|
||||
step=step,
|
||||
max_steps=self.max_steps,
|
||||
min_lr=self.min_lr)
|
||||
for initial_lr in self.base_lrs
|
||||
]
|
||||
return new_lrs
|
||||
|
||||
|
||||
class CosineAnnealing(WarmupAnnealHoldPolicy):
|
||||
|
||||
def __init__(self,
|
||||
optimizer,
|
||||
*,
|
||||
max_steps,
|
||||
min_lr=0,
|
||||
last_epoch=-1,
|
||||
**kwargs):
|
||||
super().__init__(optimizer=optimizer,
|
||||
max_steps=max_steps,
|
||||
last_epoch=last_epoch,
|
||||
min_lr=min_lr,
|
||||
**kwargs)
|
||||
|
||||
def _get_lr(self, step):
|
||||
for initial_lr in self.base_lrs:
|
||||
if initial_lr < self.min_lr:
|
||||
raise ValueError(
|
||||
f"{self} received an initial learning rate "
|
||||
f"that was lower than the minimum learning rate.")
|
||||
|
||||
if self.constant_steps is None or self.constant_steps == 0:
|
||||
new_lrs = [
|
||||
_cosine_annealing(
|
||||
initial_lr=initial_lr,
|
||||
step=step - self.warmup_steps,
|
||||
max_steps=self.max_steps - self.warmup_steps,
|
||||
min_lr=self.min_lr,
|
||||
) for initial_lr in self.base_lrs
|
||||
]
|
||||
else:
|
||||
new_lrs = self._get_linear_warmup_with_cosine_annealing_lr(step)
|
||||
return new_lrs
|
||||
|
||||
def _get_warmup_lr(self, step):
|
||||
if self.constant_steps is None or self.constant_steps == 0:
|
||||
return super()._get_warmup_lr(step)
|
||||
else:
|
||||
# Use linear warmup for the initial part.
|
||||
return self._get_linear_warmup_with_cosine_annealing_lr(step)
|
||||
|
||||
def _get_constant_lr(self, step):
|
||||
# Only called when `constant_steps` > 0.
|
||||
return self._get_linear_warmup_with_cosine_annealing_lr(step)
|
||||
|
||||
def _get_linear_warmup_with_cosine_annealing_lr(self, step):
|
||||
# Cosine Schedule for Megatron LM,
|
||||
# slightly different warmup schedule + constant LR at the end.
|
||||
new_lrs = [
|
||||
_linear_warmup_with_cosine_annealing(
|
||||
max_lr=self.base_lrs[0],
|
||||
warmup_steps=self.warmup_steps,
|
||||
step=step,
|
||||
decay_steps=self.decay_steps,
|
||||
min_lr=self.min_lr,
|
||||
) for _ in self.base_lrs
|
||||
]
|
||||
return new_lrs
|
||||
|
||||
|
||||
class NoamAnnealing(_LRScheduler):
|
||||
|
||||
def __init__(self,
|
||||
optimizer,
|
||||
*,
|
||||
d_model,
|
||||
warmup_steps=None,
|
||||
warmup_ratio=None,
|
||||
max_steps=None,
|
||||
min_lr=0.0,
|
||||
last_epoch=-1):
|
||||
self._normalize = d_model**(-0.5)
|
||||
assert not (warmup_steps is not None
|
||||
and warmup_ratio is not None), \
|
||||
"Either use particular number of step or ratio"
|
||||
assert warmup_ratio is None or max_steps is not None, \
|
||||
"If there is a ratio, there should be a total steps"
|
||||
|
||||
# It is necessary to assign all attributes *before* __init__,
|
||||
# as class is wrapped by an inner class.
|
||||
self.max_steps = max_steps
|
||||
if warmup_steps is not None:
|
||||
self.warmup_steps = warmup_steps
|
||||
elif warmup_ratio is not None:
|
||||
self.warmup_steps = int(warmup_ratio * max_steps)
|
||||
else:
|
||||
self.warmup_steps = 0
|
||||
|
||||
self.min_lr = min_lr
|
||||
super().__init__(optimizer, last_epoch)
|
||||
|
||||
def get_lr(self):
|
||||
if not self._get_lr_called_within_step:
|
||||
warnings.warn(
|
||||
"To get the last learning rate computed "
|
||||
"by the scheduler, please use `get_last_lr()`.",
|
||||
UserWarning,
|
||||
stacklevel=2)
|
||||
|
||||
step = max(1, self.last_epoch)
|
||||
|
||||
for initial_lr in self.base_lrs:
|
||||
if initial_lr < self.min_lr:
|
||||
raise ValueError(
|
||||
f"{self} received an initial learning rate "
|
||||
f"that was lower than the minimum learning rate.")
|
||||
|
||||
new_lrs = [
|
||||
self._noam_annealing(initial_lr=initial_lr, step=step)
|
||||
for initial_lr in self.base_lrs
|
||||
]
|
||||
return new_lrs
|
||||
|
||||
def _noam_annealing(self, initial_lr, step):
|
||||
if self.warmup_steps > 0:
|
||||
mult = self._normalize * min(step**(-0.5),
|
||||
step * (self.warmup_steps**(-1.5)))
|
||||
else:
|
||||
mult = self._normalize * step**(-0.5)
|
||||
|
||||
out_lr = initial_lr * mult
|
||||
if step > self.warmup_steps:
|
||||
out_lr = max(out_lr, self.min_lr)
|
||||
return out_lr
|
||||
|
||||
|
||||
class NoamHoldAnnealing(WarmupHoldPolicy):
|
||||
|
||||
def __init__(self,
|
||||
optimizer,
|
||||
*,
|
||||
max_steps,
|
||||
decay_rate=0.5,
|
||||
min_lr=0.0,
|
||||
last_epoch=-1,
|
||||
**kwargs):
|
||||
"""
|
||||
From Nemo:
|
||||
Implementation of the Noam Hold Annealing policy
|
||||
from the SqueezeFormer paper.
|
||||
|
||||
Unlike NoamAnnealing, the peak learning rate
|
||||
can be explicitly set for this scheduler.
|
||||
The schedule first performs linear warmup,
|
||||
then holds the peak LR, then decays with some schedule for
|
||||
the remainder of the steps.
|
||||
Therefore the min-lr is still dependent
|
||||
on the hyper parameters selected.
|
||||
|
||||
It's schedule is determined by three factors-
|
||||
|
||||
Warmup Steps: Initial stage, where linear warmup
|
||||
occurs uptil the peak LR is reached. Unlike NoamAnnealing,
|
||||
the peak LR is explicitly stated here instead of a scaling factor.
|
||||
|
||||
Hold Steps: Intermediate stage, where the peak LR
|
||||
is maintained for some number of steps. In this region,
|
||||
the high peak LR allows the model to converge faster
|
||||
if training is stable. However the high LR
|
||||
may also cause instability during training.
|
||||
Should usually be a significant fraction of training
|
||||
steps (around 30-40% of the entire training steps).
|
||||
|
||||
Decay Steps: Final stage, where the LR rapidly decays
|
||||
with some scaling rate (set by decay rate).
|
||||
To attain Noam decay, use 0.5,
|
||||
for Squeezeformer recommended decay, use 1.0.
|
||||
The fast decay after prolonged high LR during
|
||||
hold phase allows for rapid convergence.
|
||||
|
||||
References:
|
||||
- [Squeezeformer:
|
||||
An Efficient Transformer for Automatic Speech Recognition]
|
||||
(https://arxiv.org/abs/2206.00888)
|
||||
|
||||
Args:
|
||||
optimizer: Pytorch compatible Optimizer object.
|
||||
warmup_steps: Number of training steps in warmup stage
|
||||
warmup_ratio: Ratio of warmup steps to total steps
|
||||
hold_steps: Number of training steps to
|
||||
hold the learning rate after warm up
|
||||
hold_ratio: Ratio of hold steps to total steps
|
||||
max_steps: Total number of steps while training or `None` for
|
||||
infinite training
|
||||
decay_rate: Float value describing the polynomial decay
|
||||
after the hold period. Default value
|
||||
of 0.5 corresponds to Noam decay.
|
||||
min_lr: Minimum learning rate.
|
||||
"""
|
||||
self.decay_rate = decay_rate
|
||||
super().__init__(optimizer=optimizer,
|
||||
max_steps=max_steps,
|
||||
last_epoch=last_epoch,
|
||||
min_lr=min_lr,
|
||||
**kwargs)
|
||||
|
||||
def _get_lr(self, step):
|
||||
if self.warmup_steps is None or self.warmup_steps == 0:
|
||||
raise ValueError(
|
||||
"Noam scheduler cannot be used without warmup steps")
|
||||
|
||||
if self.hold_steps > 0:
|
||||
hold_steps = self.hold_steps - self.warmup_steps
|
||||
else:
|
||||
hold_steps = 0
|
||||
|
||||
new_lrs = [
|
||||
_noam_hold_annealing(
|
||||
initial_lr,
|
||||
step=step,
|
||||
warmup_steps=self.warmup_steps,
|
||||
hold_steps=hold_steps,
|
||||
decay_rate=self.decay_rate,
|
||||
min_lr=self.min_lr,
|
||||
) for initial_lr in self.base_lrs
|
||||
]
|
||||
return new_lrs
|
||||
|
||||
def set_step(self, step: int):
|
||||
self.last_epoch = step
|
||||
286
cosyvoice/utils/train_utils.py
Normal file
286
cosyvoice/utils/train_utils.py
Normal file
@@ -0,0 +1,286 @@
|
||||
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
||||
# 2023 Horizon Inc. (authors: Xingchen Song)
|
||||
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from contextlib import nullcontext
|
||||
import logging
|
||||
import os
|
||||
import torch
|
||||
import json
|
||||
import re
|
||||
import datetime
|
||||
import yaml
|
||||
|
||||
import deepspeed
|
||||
import torch.optim as optim
|
||||
import torch.distributed as dist
|
||||
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
|
||||
from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live
|
||||
|
||||
from cosyvoice.dataset.dataset import Dataset
|
||||
from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing
|
||||
|
||||
|
||||
def init_distributed(args):
|
||||
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
||||
local_rank = int(os.environ.get('LOCAL_RANK', 0))
|
||||
rank = int(os.environ.get('RANK', 0))
|
||||
logging.info('training on multiple gpus, this gpu {}'.format(local_rank) +
|
||||
', rank {}, world_size {}'.format(rank, world_size))
|
||||
if args.train_engine == 'torch_ddp':
|
||||
torch.cuda.set_device(local_rank)
|
||||
dist.init_process_group(args.dist_backend)
|
||||
else:
|
||||
deepspeed.init_distributed(dist_backend=args.dist_backend)
|
||||
return world_size, local_rank, rank
|
||||
|
||||
|
||||
def init_dataset_and_dataloader(args, configs):
|
||||
train_dataset = Dataset(args.train_data, data_pipeline=configs['data_pipeline'], mode='train', shuffle=True, partition=True)
|
||||
cv_dataset = Dataset(args.cv_data, data_pipeline=configs['data_pipeline'], mode='train', shuffle=False, partition=False)
|
||||
|
||||
# do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
|
||||
train_data_loader = DataLoader(train_dataset,
|
||||
batch_size=None,
|
||||
pin_memory=args.pin_memory,
|
||||
num_workers=args.num_workers,
|
||||
prefetch_factor=args.prefetch)
|
||||
cv_data_loader = DataLoader(cv_dataset,
|
||||
batch_size=None,
|
||||
pin_memory=args.pin_memory,
|
||||
num_workers=args.num_workers,
|
||||
prefetch_factor=args.prefetch)
|
||||
return train_dataset, cv_dataset, train_data_loader, cv_data_loader
|
||||
|
||||
|
||||
|
||||
def check_modify_and_save_config(args, configs):
|
||||
if args.train_engine == "torch_ddp":
|
||||
configs['train_conf']["dtype"] = 'fp32'
|
||||
else:
|
||||
with open(args.deepspeed_config, 'r') as fin:
|
||||
ds_configs = json.load(fin)
|
||||
if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
|
||||
configs['train_conf']["dtype"] = "fp16"
|
||||
elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
|
||||
configs['train_conf']["dtype"] = "bf16"
|
||||
else:
|
||||
configs['train_conf']["dtype"] = "fp32"
|
||||
assert ds_configs["train_micro_batch_size_per_gpu"] == 1
|
||||
# if use deepspeed, override ddp config
|
||||
configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] * configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
|
||||
configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
|
||||
configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
|
||||
configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
|
||||
return configs
|
||||
|
||||
|
||||
def wrap_cuda_model(args, model):
|
||||
local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
|
||||
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
||||
if args.train_engine == "torch_ddp": # native pytorch ddp
|
||||
assert (torch.cuda.is_available())
|
||||
model.cuda()
|
||||
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
|
||||
else:
|
||||
if int(os.environ.get('RANK', 0)) == 0:
|
||||
logging.info("Estimating model states memory needs (zero2)...")
|
||||
estimate_zero2_model_states_mem_needs_all_live(
|
||||
model,
|
||||
num_gpus_per_node=local_world_size,
|
||||
num_nodes=world_size // local_world_size)
|
||||
return model
|
||||
|
||||
|
||||
def init_optimizer_and_scheduler(args, configs, model):
|
||||
if configs['train_conf']['optim'] == 'adam':
|
||||
optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
|
||||
elif configs['train_conf']['optim'] == 'adamw':
|
||||
optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
|
||||
else:
|
||||
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||
|
||||
if configs['train_conf']['scheduler'] == 'warmuplr':
|
||||
scheduler_type = WarmupLR
|
||||
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
||||
scheduler_type = NoamHoldAnnealing
|
||||
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||
else:
|
||||
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||
|
||||
# use deepspeed optimizer for speedup
|
||||
if args.train_engine == "deepspeed":
|
||||
def scheduler(opt):
|
||||
return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
|
||||
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||
args=args,
|
||||
model=model,
|
||||
optimizer=None,
|
||||
lr_scheduler=scheduler,
|
||||
model_parameters=model.parameters())
|
||||
|
||||
return model, optimizer, scheduler
|
||||
|
||||
|
||||
def init_summarywriter(args):
|
||||
writer = None
|
||||
if int(os.environ.get('RANK', 0)) == 0:
|
||||
os.makedirs(args.model_dir, exist_ok=True)
|
||||
writer = SummaryWriter(args.tensorboard_dir)
|
||||
return writer
|
||||
|
||||
|
||||
def save_model(model, model_name, info_dict):
|
||||
rank = int(os.environ.get('RANK', 0))
|
||||
model_dir = info_dict["model_dir"]
|
||||
save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name))
|
||||
|
||||
if info_dict["train_engine"] == "torch_ddp":
|
||||
if rank == 0:
|
||||
torch.save(model.module.state_dict(), save_model_path)
|
||||
else:
|
||||
with torch.no_grad():
|
||||
model.save_checkpoint(save_dir=model_dir,
|
||||
tag=model_name,
|
||||
client_state=info_dict)
|
||||
if rank == 0:
|
||||
info_path = re.sub('.pt$', '.yaml', save_model_path)
|
||||
info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S')
|
||||
with open(info_path, 'w') as fout:
|
||||
data = yaml.dump(info_dict)
|
||||
fout.write(data)
|
||||
logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path))
|
||||
|
||||
|
||||
def cosyvoice_join(group_join, info_dict):
|
||||
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
||||
local_rank = int(os.environ.get('LOCAL_RANK', 0))
|
||||
rank = int(os.environ.get('RANK', 0))
|
||||
|
||||
if info_dict["batch_idx"] != 0:
|
||||
# we try to join all rank in both ddp and deepspeed mode, in case different rank has different lr
|
||||
try:
|
||||
dist.monitored_barrier(group=group_join,
|
||||
timeout=group_join.options._timeout)
|
||||
return False
|
||||
except RuntimeError as e:
|
||||
logging.info("Detected uneven workload distribution: {}\n".format(e) +
|
||||
"Break current worker to manually join all workers, " +
|
||||
"world_size {}, current rank {}, current local_rank {}\n".
|
||||
format(world_size, rank, local_rank))
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def batch_forward(model, batch, info_dict):
|
||||
device = int(os.environ.get('LOCAL_RANK', 0))
|
||||
|
||||
dtype = info_dict["dtype"]
|
||||
if dtype == "fp16":
|
||||
dtype = torch.float16
|
||||
elif dtype == "bf16":
|
||||
dtype = torch.bfloat16
|
||||
else: # fp32
|
||||
dtype = torch.float32
|
||||
|
||||
if info_dict['train_engine'] == 'torch_ddp':
|
||||
autocast = nullcontext()
|
||||
else:
|
||||
autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
|
||||
|
||||
with autocast:
|
||||
info_dict['loss_dict'] = model(batch, device)
|
||||
return info_dict
|
||||
|
||||
|
||||
def batch_backward(model, info_dict):
|
||||
if info_dict["train_engine"] == "deepspeed":
|
||||
scaled_loss = model.backward(info_dict['loss_dict']['loss'])
|
||||
else:
|
||||
scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
|
||||
scaled_loss.backward()
|
||||
|
||||
info_dict['loss_dict']['loss'] = scaled_loss
|
||||
return info_dict
|
||||
|
||||
|
||||
def update_parameter_and_lr(model, optimizer, scheduler, info_dict):
|
||||
grad_norm = 0.0
|
||||
if info_dict['train_engine'] == "deepspeed":
|
||||
info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
|
||||
model.step()
|
||||
grad_norm = model.get_global_grad_norm()
|
||||
elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
|
||||
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
||||
if torch.isfinite(grad_norm):
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
scheduler.step()
|
||||
info_dict["lr"] = optimizer.param_groups[0]['lr']
|
||||
info_dict["grad_norm"] = grad_norm
|
||||
return info_dict
|
||||
|
||||
|
||||
def log_per_step(writer, info_dict):
|
||||
tag = info_dict["tag"]
|
||||
epoch = info_dict.get('epoch', 0)
|
||||
step = info_dict["step"]
|
||||
batch_idx = info_dict["batch_idx"]
|
||||
loss_dict = info_dict['loss_dict']
|
||||
rank = int(os.environ.get('RANK', 0))
|
||||
|
||||
# only rank 0 write to tensorboard to avoid multi-process write
|
||||
if writer is not None:
|
||||
if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \
|
||||
(info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0):
|
||||
for k in ['epoch', 'lr', 'grad_norm']:
|
||||
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
|
||||
for k, v in loss_dict.items():
|
||||
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
|
||||
|
||||
# TRAIN & CV, Shell log (stdout)
|
||||
if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0:
|
||||
log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1)
|
||||
for name, value in loss_dict.items():
|
||||
log_str += '{} {:.6f} '.format(name, value)
|
||||
if tag == "TRAIN":
|
||||
log_str += 'lr {:.8f} grad_norm {:.6f}'.format(
|
||||
info_dict["lr"], info_dict['grad_norm'])
|
||||
log_str += ' rank {}'.format(rank)
|
||||
logging.debug(log_str)
|
||||
|
||||
|
||||
def log_per_save(writer, info_dict):
|
||||
tag = info_dict["tag"]
|
||||
epoch = info_dict["epoch"]
|
||||
step = info_dict["step"]
|
||||
loss_dict = info_dict["loss_dict"]
|
||||
lr = info_dict['lr']
|
||||
rank = int(os.environ.get('RANK', 0))
|
||||
logging.info(
|
||||
'Epoch {} Step {} CV info lr {} {} rank {}'.format(
|
||||
epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()])))
|
||||
|
||||
if writer is not None:
|
||||
for k in ['epoch', 'lr']:
|
||||
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
|
||||
for k, v in loss_dict.items():
|
||||
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
|
||||
Reference in New Issue
Block a user